Cho hàm số f(x) = x2 – 1, g(x) = x + 1. a) lim x đến 1 f( x ) và lim x đến 1 g( x ). b) lim x đến 1[ f( x ) + g( x ) và so sánh với lim x đến 1 f( x ) + lim x đến 1 g( x ).

Cho hàm số f(x) = x2 – 1, g(x) = x + 1.

a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

b) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

c) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

d) \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right]\) và so sánh với \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

e) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}}\) và so sánh với \(\frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}\).

Trả lời

Lời giải

a) Giả sử (xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:

\(\lim f\left( {{x_n}} \right) = \lim \left( {x_n^2 - 1} \right) = \lim x_n^2 - 1 = 1 - 1 = 0\).

\( \Rightarrow \lim f\left( x \right) = 0\).

\(\lim g\left( {{x_n}} \right) = \lim \left( {{x_n} + 1} \right) = \lim {x_n} + 1 = 2\)

\( \Rightarrow \lim g\left( x \right) = 2\).

b) Ta có: f(x) + g(x) = x2 – 1 + x + 1 = x2 + x

(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:

\(\lim \left[ {f\left( {{x_n}} \right) + g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^2 + {x_n}} \right) = \lim x_n^2 + \lim {x_n} = {1^2} + 1 = 2\).

\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = 2\).

Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 + 2 = 2\).

Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 2\).

c) Ta có: f(x) – g(x) = x2 – 1 – x – 1 = x2 – x – 2

(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:

\(\lim \left[ {f\left( {{x_n}} \right) - g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^2 - {x_n} - 2} \right) = \lim x_n^2 - \lim {x_n} - 2 = {1^2} - 1 - 2 = - 2\).

\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = - 2\).

Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0 - 2 = - 2\).

Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) - g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right) - \mathop {\lim }\limits_{x \to 1} g\left( x \right) = - 2\).

d) Ta có: f(x).g(x) = (x2 – 1)(x + 1) = x3 + x2 – x – 1

(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:

\(\lim \left[ {f\left( {{x_n}} \right).g\left( {{x_n}} \right)} \right] = \lim \left( {x_n^3 + x_n^2 - {x_n} - 1} \right) = \lim x_n^3 + \lim x_n^2 - \lim {x_n} - 1 = {1^3} + {1^2} - 1 - 1 = 0\)

\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = 0\).

Ta lại có: \(\mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right) = 0.2 = 0\).

Vậy \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} f\left( x \right).\mathop {\lim }\limits_{x \to 1} g\left( x \right)\).

e) Ta có: \(\frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{{x^2} - 1}}{{x + 1}}\)

(xn) là dãy số bất kì thỏa mãn limxn = 1. Khi đó ta có:

\(\lim \frac{{f\left( {{x_n}} \right)}}{{g\left( {{x_n}} \right)}} = \lim \frac{{x_n^2 - 1}}{{{x_n} + 1}} = \lim \frac{{\left( {{x_n} - 1} \right)\left( {{x_n} + 1} \right)}}{{{x_n} + 1}} = \lim \left( {{x_n} - 1} \right) = 0\).

\( \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = 0\).

Ta lại có: \(\frac{{\lim f\left( x \right)}}{{\lim g\left( x \right)}} = \frac{0}{2} = 0\)

Vậy \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to 1} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 1} g\left( x \right)}}\).

Câu hỏi cùng chủ đề

Xem tất cả