Cho hai hàm số f(x), g(x) đều có đạo hàm trên R và thỏa mãn f^3(2-x)-2f^2(2+3x)+x^2g(x)+36x=0 , với mọi x thuộc R .

Cho hai hàm số fx,  gx   đều có đạo hàm trên R và thỏa mãn f32x2f22+3x+x2gx+36x=0 , với mọi x . Phương trình tiếp tuyến của đồ thị hàm số y=fx  tại điểm có hoành độ x=2 

A. y=x.

B. y=2x3.

C. y=2x+3.

D. y=x.

Trả lời

Hướng dẫn giải

Ta có f32x2f22+3x+x2gx+36x=0,x1

Thay x=0  vào (1) ta có f322f22=0f2=0f2=2

Lấy đạo hàm hai vế của (1) ta được

3f22x.f'2x12f2+3x.f'2+3x+2x.gx+x2.g'x+36=0.  2

Thay x=0 vào (2) ta có 3f22.f'212f2.f'2+36=0.  3

+ Với f2=0  thay vào (3) thì 36=0 (vô lý).

+ Với f2=2  thay vào (3) thì f'2=1  nên phương trình tiếp tuyến là y=x.

Chọn D.

Câu hỏi cùng chủ đề

Xem tất cả