Cho hai hàm số bậc nhất y = 2mx + 1 và y = (m – 1)x + 2. Tìm các giá trị của m để đồ thị của hai hàm số đã cho là

Luyện tập 2 trang 54 Toán 8 Tập 2: Cho hai hàm số bậc nhất y = 2mx + 1 và y = (m – 1)x + 2. Tìm các giá trị của m để đồ thị của hai hàm số đã cho là:

a) Hai đường thẳng song song với nhau.

b) Hai đường thẳng cắt nhau.

Trả lời

Để hàm số y = 2mx + 1 là hàm số bậc nhất thì 2m ≠ 0, tức là m ≠ 0.

Để hàm số y = (m – 1)x + 2 là hàm số bậc nhất thì m – 1 ≠ 0, tức là m ≠ 1.

Vậy ta có điều kiện là m ≠ 0 và m ≠ 1.

a) Đồ thị của hai hàm số đã cho là hai đường thẳng song song khi a = a′ và b ≠ b', tức là 2m = m – 1 và 1 ≠ 2 (luôn đúng).

Ta có 2m = m – 1, suy ra m = – 1 (thỏa mãn điều kiện).

Vậy m = – 1 thì thỏa mãn yêu cầu bài toán.

b) Đồ thị của hai hàm số đã cho là hai đường thẳng cắt nhau khi a ≠ a′, tức là

2m ≠ m – 1 hay m ≠ – 1.

Kết hợp với điều kiện, ta được các giá trị m cần tìm là m ≠ 0, m ≠ 1, m ≠ – 1.

Xem thêm các bài giải SGK Toán 8 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả