Cho AB và CD là hai đường kính của đường tròn (O) vuông góc nhau. Lấy điểm E thuộc cung nhỏ BC (E khác B, C). Tia CE cắt AB tại K. Gọi I là giao điểm của ED và AB. a) Chứng minh EA là phân gi

Cho AB và CD là hai đường kính của đường tròn (O) vuông góc nhau. Lấy điểm E thuộc cung nhỏ BC (E khác B, C). Tia CE cắt AB tại K. Gọi I là giao điểm của ED và AB.

a) Chứng minh EA là phân giác của góc CED.

Trả lời

a)

Cho AB và CD là hai đường kính của đường tròn (O) vuông góc nhau. Lấy điểm E thuộc cung nhỏ BC (E khác B, C). Tia CE cắt AB tại K. Gọi I là giao điểm của ED và AB. a) Chứng minh EA là phân giác của góc CED. (ảnh 1)

Xét (O) có AB CD, AB và CD là hai đường kính, suy ra AC=AD

Mà CEA^   là góc nội tiếp chắn cung AC

AED^ là góc nội tiếp chắn cung AD

Do đó CEA^=AED^

Hay EA là phân giác của CED^ .

Câu hỏi cùng chủ đề

Xem tất cả