Câu hỏi:
04/04/2024 28
c) Từ một nhóm học sinh lớp 10A gồm 5 bạn học giỏi môn Toán, 4 bạn học giỏi môn Lý, 3 bạn học giỏi môn Hóa, 2 bạn học giỏi môn Văn (mỗi học sinh chỉ giỏi đúng một môn). Đoàn trường chọn ngẫu nhiên 4 học sinh để tham gia thi hành trình tri thức. Tính xác suất để chọn được 4 học sinh sao cho có ít nhất 1 bạn học giỏi Toán và ít nhất 1 bạn học giỏi Văn.
c) Từ một nhóm học sinh lớp 10A gồm 5 bạn học giỏi môn Toán, 4 bạn học giỏi môn Lý, 3 bạn học giỏi môn Hóa, 2 bạn học giỏi môn Văn (mỗi học sinh chỉ giỏi đúng một môn). Đoàn trường chọn ngẫu nhiên 4 học sinh để tham gia thi hành trình tri thức. Tính xác suất để chọn được 4 học sinh sao cho có ít nhất 1 bạn học giỏi Toán và ít nhất 1 bạn học giỏi Văn.
Trả lời:
c) Không gian mẫu là số cách chọn ngẫu nhiên 4 bạn học sinh trong 14 bạn học sinh.
Suy ra số phần tử của không gian mẫu là
Gọi A là biến cố: “Chọn được 4 học sinh sao cho có ít nhất 1 bạn học giỏi Toán và ít nhất 1 bạn học giỏi Văn”.
Các trường hợp thuận lợi cho biến cố A là
Trường hợp 1: 1 học sinh giỏi Toán; 1 học sinh giỏi Văn; 2 học sinh môn khác. Có cách chọn.
Trường hợp 2: 1 học sinh giỏi Toán; 2 học sinh giỏi Văn; 1 học sinh môn khác. Có cách chọn.
Trường hợp 3: 2 học sinh giỏi Toán; 1 học sinh giỏi Văn; 1 học sinh môn khác.
Có cách chọn.
Trường hợp 4: 2 học sinh giỏi Toán; 2 học sinh giỏi Văn. Có cách chọn.
Trường hợp 5: 3 học sinh giỏi Toán; 1 học sinh giỏi Văn. Có cách chọn.
Vậy
Vây xác suất cần tính
c) Không gian mẫu là số cách chọn ngẫu nhiên 4 bạn học sinh trong 14 bạn học sinh.
Suy ra số phần tử của không gian mẫu là
Gọi A là biến cố: “Chọn được 4 học sinh sao cho có ít nhất 1 bạn học giỏi Toán và ít nhất 1 bạn học giỏi Văn”.
Các trường hợp thuận lợi cho biến cố A là
Trường hợp 1: 1 học sinh giỏi Toán; 1 học sinh giỏi Văn; 2 học sinh môn khác. Có cách chọn.
Trường hợp 2: 1 học sinh giỏi Toán; 2 học sinh giỏi Văn; 1 học sinh môn khác. Có cách chọn.
Trường hợp 3: 2 học sinh giỏi Toán; 1 học sinh giỏi Văn; 1 học sinh môn khác.
Có cách chọn.
Trường hợp 4: 2 học sinh giỏi Toán; 2 học sinh giỏi Văn. Có cách chọn.
Trường hợp 5: 3 học sinh giỏi Toán; 1 học sinh giỏi Văn. Có cách chọn.
Vậy
Vây xác suất cần tínhCÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một hộp đựng 10 thẻ đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là
Một hộp đựng 10 thẻ đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là
Câu 2:
Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Giá trị của n để số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A
Câu 3:
Cho tam giác đều ABC. Góc quay của phép quay tâm A biến B thành C là
Câu 4:
a) Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9. Có bao nhiêu cách chọn một trong các quả cầu ấy?
a) Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9. Có bao nhiêu cách chọn một trong các quả cầu ấy?
Câu 6:
Trong mặt phẳng Oxy cho đường thẳng d có phương trình . Phép vị tự tâm O tỉ số k=2 biến d thành đường thẳng nào trong các đường thẳng sau?
Trong mặt phẳng Oxy cho đường thẳng d có phương trình . Phép vị tự tâm O tỉ số k=2 biến d thành đường thẳng nào trong các đường thẳng sau?
Câu 9:
Một người viết ngẫu nhiên một số có bốn chữ số. Xác suất để các chữ số của số được viết ra có thứ tự tăng dần hoặc giảm dần (nghĩa là nếu số được viết dưới dạng thì hoặc là
Một người viết ngẫu nhiên một số có bốn chữ số. Xác suất để các chữ số của số được viết ra có thứ tự tăng dần hoặc giảm dần (nghĩa là nếu số được viết dưới dạng thì hoặc là