Hoặc
Biết 12xdxx+12x+1=aln2+bln3+cln5. Tính S = a +b + c.
A. S = 1
B. S = 0
C. S = -1
D. S = 2
Đáp án B
Ta có: ∫12xdxx+12x+1=∫12−12x+1+1x+1dx
=−12ln2x+1+lnx+112=−12ln5+ln3−−12ln3+ln2
=−12ln5+32ln3−ln2=aln2+bln3+cln5
⇒a=−1;b=32;c=−12⇒S=a+b+c=0.