Các công thức về Cấp số cộng, Cấp số nhân (2024) đầy đủ nhất

Tổng hợp đầy đủ lí thuyết công thức Cấp số cộng, cấp số nhân giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.

CẤP SỐ CỘNG, CẤP SỐ NHÂN 

Lý thuyết tổng hợp

1. Cấp số cộng

a. Định nghĩa

Dãy số un là một cấp số cộng nếu un+1=un+d với mọi nNd là hằng số.

d=un+1un được gọi là công sai.

d=0: CSC là một dãy số không đổi.

Ví dụ:

Dãy số 3;6;9;12;15 là một cấp số cộng vì:

6=3+39=6+312=9+315=12+3

Đây là CSC có công sai d=3 và số hạng đầu u1=3.

b. Số hạng tổng quát

Kí hiệu: un=u1+(n1)d,(n2). ( n là số tự nhiên bất kì lớn hơn 1)

Như vậy công sai còn có thể tính bởi công thức: d=unu1n1.

Ví dụ:

Cho CSC (un) biết u1=1,d=3. Tìm u20.

Ta có:

u20=u1+(201)d=u1+19d=1+19.3=56

c. Tính chất

uk=uk1+uk+12 với k2 hay uk+1+uk1=2uk

Ví dụ:

Cho ba số 3;x;9 theo thứ đó lập thành một CSC. Tìm x.

Ta có: x=3+92=6.

Vậy x=6.

d. Tổng n số hạng đầu

+) Thông qua số hạng đầu, cuối và số số hạng:  Sn=n(u1+un)2, với nN

+) Thông qua số hạng đầu, số số hạng và công sai:

Sn=nu1+n(n1)2d

Sn=n[2u1+(n1)d]2

2. Cấp số nhân

a. Định nghĩa

un là cấp số nhân un+1=un.q, với nN

Công bội q=un+1un.

Ví dụ:

Cho cấp số nhân (un) thỏa mãn u1=5,q=3. Tính u2.

Ta có: u2=qu1=3.5=15.

b. Số hạng tổng quát

un=u1.qn1,(n2)

Ví dụ:

Cho cấp số nhân (un) thỏa mãn u1=5,q=3. Tính u5.

Ta có:

u5=u1q4=5.34=405.

c. Tính chất

uk2=uk1.uk+1 hay |uk|=uk1.uk+1, với k2 

Ví dụ:

Cho bốn số x;5;25;y theo thứ tự đó lập thành một CSN. Tìm x,y.

Ta có:

52=x.25x=1252=5yy=125

Vậy x=1,y=125.

d. Tổng n số hạng đầu 

Sn=u1(qn1)q1 =u1(1qn)1q(q1).

Bài tập vận dụng (có đáp án)

Câu 1: Cho hai số -3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n?

A. n = 12

B.n = 13

C. n = 14

D. n = 15

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án A

Câu 2: Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?

A. m = 2

B.m = 3

C. m = 4

D. m = 5

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án C

Câu 3: Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17;..... Tìm số hạng tổng quát un của cấp số cộng.

A. un = 5n + 1

B. un = 5n - 1

C. un = 4n + 1

D. un = 4n - 1

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án C

Câu 4: Cho cấp số cộng (un) có d = -2 và S8 = 72. Tìm số hạng đầu tiên u1?

A. 16

B. – 16

C. 4

D. 8

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án A

Câu 5: Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?

A. d = 2

B. d = 3

C. d = 4

D. d = 5

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án A

Câu 6: Cho cấp số cộng (un) có: u1 = -0,1; d = 0,1. Số hạng thứ 7 của cấp số cộng này là:

A. 1, 6

B. 6

C. 0,5

D. 0,6

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án C

Câu 7: Cho cấp số cộng (un) thỏa mãn: Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 Xác định công sai d

A. d = 2

B. d = 4

C. d = 3

D. d = 5

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án C

Câu 8: Cho cấp số cộng (un) thỏa mãn u2 + u23 = 60. Tính tổng S24 của 24 số hạng đầu tiên của cấp số cộng đã cho.

A. 60

B. 120

C. 720

D. 1440

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án C

Câu 9: Cho cấp số cộng (un) thỏa mãn Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11.Mệnh đề nào sau đây đúng?

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án A

Câu 10: Trong các dãy số (un) sau, dãy nào là cấp số nhân?

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án D

Câu 11: Cho cấp số nhân (un) với công bội q < 0 và u2 = 4, u4 = 9. Tìm u1 .

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án A

Câu 12: Cho cấp số nhân (un) biết u1 + u5 = 51; u2 + u6 = 102. Hỏi số 12288 là số hạng thứ mấy của cấp số nhân (un) ?

A. Số hạng thứ 10.

B. Số hạng thứ 11.

C. Số hạng thứ 12.

D. Số hạng thứ 13.

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án D

Câu 13: Tìm x biết 1, x2, 6 - x2 lập thành cấp số nhân.

A. x = ± 1

B. x = ± 1

C. x = ± √2

D. x = ± √3

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Câu 14: Tính tổng tất cả các số hạng của một cấp số nhân , biết số hạng đầu bằng 18, số hạng thứ hai bằng 54 và số hạng cuối bằng 39366.

A. 19674.

B. 59040.

C. 177138.

D. 6552

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Câu 15: Các số x + 6y ; 5x + 2y; 8x + y theo thứ tự đó lập thành một cấp số cộng; đồng thời các số x- 1 ; y + 2 ; x – 3y theo thứ tự đó lập thành một cấp số nhân. Tính x2 + y2

A. 40

B. 25

C. 100

D. 10

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!