60 Bài tập về phép chia số phức (có đáp án năm 2023) - Toán 12

1900.edu.vn xin giới thiệu: Tổng hợp các dạng bài tập về phép chia số phức Toán 12. Đây sẽ là tài liệu tham khảo hữu ích, giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán 12, giải bài tập Toán 12 tốt hơn. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây.

Kiến thức cần nhớ

1. Tổng và tích của hai số phức liên hợp

Cho số phức z = a + bi, ta có:

z+​  z¯  = (a + bi) + (a – bi) = 2a;

z.​  z¯   = (a + bi). (a – bi) = a2 – (bi)2 = a2 + b2 =z2

Do đó:

+ Tổng của một số phức với số phức liên hợp của nó bằng hai lần phần thực của số phức đó.

+ Tích của một số phức với số phức liên hợp của nó bằng bình phương môđun của số phức đó.

Vậy tổng và tích của hai số phức liên hợp là một số thực.

2. Phép chia hai số phức

Chia số phức c + di cho số phức a + bi khác 0 là tìm số phức z sao cho

 c + di = (a + bi).z. Số phức z được gọi là thương trong phép chia c + di cho a + bi và kí hiệu là: z  =  c+dia+​  bi.

Ví dụ 1. Thực hiện phép chia 4 – 6i cho 1 + i.

Lời giải:

Giả sử z=  46i1+  i

Theo định nghĩa ta có: (1 + i).z = 4 – 6i.

Nhân cả hai vế với số phức liên hợp của 1 + i ta được:

(1 – i) .(1 + i).z = (1 – i).(4 – 6i)

Suy ra: 2z = – 2 – 10i

Do đó, z = –1 – 5i

Vậy 46i1+i  =  15i.

– Tổng quát:

Giả sử z=  c+  dia+  bi. Theo định nghĩa phép chia số phức, ta có:

(a + bi).z = c + di

Nhân cả hai vế với số phức liên hợp của a + bi, ta được:

(a – bi)(a + bi).z = (a – bi)(c + di)

Hay (a2 + b2).z = (ac + bd) + (ad – bc).i

Lý thuyết Phép chia số phức chi tiết – Toán lớp 12 (ảnh 1)

– Chú ý. Trong thực hành để tính thương c+dia+bi, ta nhân cả tử và mẫu với số phức liên hợp của a + bi.

Ví dụ 2. Thực hiện phép chia 2 – 4i cho 2 + i.

Lời giải:

Lý thuyết Phép chia số phức chi tiết – Toán lớp 12 (ảnh 1)

Các dạng bài tập về phép chia số phức

 

 

Bài tập tự luyện

1 Bài tập vận dụng

Bài 1: Cho số phức z thỏa mãn (2 + 3i)z = 1 Khi đó, z + 2z bằng

Lời giải:

Ta có: (2 + 3i)z = 1 - 5i. Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

⇒ z− = -1 + i

Bài 2: Nghịch đảo của số phức z = 1 - 2i là?

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 4: Số phức z thỏa mãn z(1 + 2i) + 1 - i = 2i là

Lời giải:

Ta có:z(1 + 2i) + 1 - i = 2i là <=> z(1 + 2i) = -1 + 3i

Do đó:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 5: Nghịch đảo của số phức z = 1 + i là?

Lời giải:

Nghịch đảo của số phức z = 1 + i là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 6: Phần thực và phần ảo của số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy phần thực và phần ảo của z là 0 và -1

Câu 7: Cho số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Phần thực và phần ảo của số phức w = (z + 1)(z + 2) là

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Suy ra w = (z + 1)(z + 2) = (i + 1)(i + 2) = -1 + 2i + i + 2 = 1 + 3i

Vậy phần thực và phần ảo của w là 1 và 3

Câu 8: Số phức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 9: Cho số phức z thỏa mãn (2 + 3i)z = 1 Khi đó, z− + 2z bằng

Lời giải:

Ta có: (2 + 3i)z = 1 - 5i. Do đó

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

⇒ z− = -1 + i

Câu 10: Các số thực x, y thỏa mãn

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khi đó, tổng T = x + y bằng?

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy T = -2 + 8 = 6

2 Bài tập tự luyện có hướng dẫn

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!