Giải SGK Toán 12 KNTT Bài 10. Phương sai và độ lệch chuẩn có đáp án

Giải SGK Toán 12 KNTT Bài 10. Phương sai và độ lệch chuẩn có đáp án

  • 29 lượt thi

  • 12 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 1:

Để xác định độ ổn định của một máy đo độ ẩm không khí, người ta dùng máy này để đo 20 lần. Nếu độ lệch chuẩn của mẫu số liệu đo lớn hơn 0,15 thì người ta sẽ đưa máy đo đi sửa chữa. Trong một lần lấy mẫu, kĩ thuật viên có được mẫu số liệu ghép nhóm như sau:

Để xác định độ ổn định của một máy đo độ ẩm không khí, người ta dùng máy này để đo 20 lần (ảnh 1)

Liệu có cần đưa máy đo này đi sửa chữa hay không?

Xem đáp án

Sau khi học xong bài này, ta giải quyết bài toán này như sau:

Chọn giá trị đại diện cho mẫu số liệu ta có:

Độ ẩm (%)

[52; 52,1)

[52,1; 52,2)

[52,2; 52,3)

[52,3; 52,4)

[52,4; 52,5)

Giá trị đại diện

52,05

52,15

52,25

52,35

52,45

Tần số

1

5

8

4

2

Độ ẩm trung bình là: 52,05.1+52,15.5+52,25.8+52,35.4+52,45.220=52,255  .

Phương sai:

s2=52,052.1+52,152.5+52,252.8+52,352.4+52,452.22052,2552=0,010475.

Độ lệch chuẩn là: s=0,0104750,102 .

Vì s = 0,102 < 0,15 do đó không cần đưa máy đo này đi sửa chữa.


Câu 2:

Trở lại bài toán trong tình huống mở đầu. Gọi x1, …, x­20 là các kết quả đo (mẫu số liệu gốc).

a) Có thể tính được chính xác phương sai và độ lệch chuẩn của mẫu số liệu gốc hay không?

Xem đáp án

Gọi x1, …, x­20 là các kết quả đo (mẫu số liệu gốc).

a) Ta không thể tính chính xác được phương sai và độ lệch chuẩn của mẫu số liệu gốc.


Câu 3:

b) Thảo luận và đề xuất ước lượng cho phương sai và độ lệch chuẩn của mẫu số liệu gốc.

Xem đáp án

b) Gọi x1; x2; x3; x4; x5 lần lượt là giá trị đại diện của 5 nhóm [52; 52,1), [52,1; 52,2), [52,2; 52,3), [52,3; 52,4), [52,4; 52,5).

Gọi  số trung bình của mẫu số liệu.

Phương sai: s2=x1x¯2+5x2x¯2+8x3x¯2+4x4x¯2+2x5x¯220  .

Độ lệch chuẩn s=s2 .


Câu 4:

Một vận động viên luyện tập chạy cự li 100 m đã ghi lại kết quả luyện tập như sau:

Một vận động viên luyện tập chạy cự li 100 m đã ghi lại kết quả luyện tập như sau: (ảnh 1)

Tìm phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm này. Phương sai và độ lệch chuẩn cho biết điều gì?

Xem đáp án

Chọn giá trị đại diện cho mẫu số liệu ta có:

Thời gian (giây)

[10,2; 10,4)

[10,4; 10,6)

[10,6; 10,8)

[10,8; 11)

Giá trị đại diện

10,3

10,5

10,7

10,9

Số vận động viên

3

7

8

2

Tổng số vận động viên là: 3 + 7 + 8 + 2 = 20.

Thời gian chạy trung bình là: 10,3.3+10,5.7+10,7.8+10,9.220=10,59  .

Phương sai của mẫu số liệu là

s2=10,32.3+10,52.7+10,72.8+10,92.22010,592=0,0299.

Độ lệch chuẩn của mẫu số liệu là:s=0,02990,17 .

Dựa vào phương sai và độ lệch chuẩn ta có kết luận rằng mẫu số liệu kết quả luyện tập có tính đồng đều, dữ liệu có xu hướng gần giá trị trung bình và ít bị phân tán.


Câu 5:

Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm cho bài toán trong tình huống mở đầu và cho biết có cần đưa máy đi sửa chữa hay không?

Xem đáp án

Chọn giá trị đại diện cho mẫu số liệu ta có:

Độ ẩm (%)

[52; 52,1)

[52,1; 52,2)

[52,2; 52,3)

[52,3; 52,4)

[52,4; 52,5)

Giá trị đại diện

52,05

52,15

52,25

52,35

52,45

Tần số

1

5

8

4

2

Độ ẩm trung bình là: 52,05.1+52,15.5+52,25.8+52,35.4+52,45.220=52,255 .

Phương sai: 

s2=52,052.1+52,152.5+52,252.8+52,352.4+52,452.22052,2552=0,010475.

Độ lệch chuẩn là: s=0,0104750,102  .

Vì s = 0,102 < 0,15 do đó không cần đưa máy đo này đi sửa chữa.


Câu 7:

b) Tính phương sai và độ lệch chuẩn của mẫu số liệu gốc và mẫu số liệu ghép nhóm. Giá trị nào là giá trị chính xác? Giá trị nào là giá trị xấp xỉ?

Xem đáp án

b) Mẫu số liệu gốc

Giá trị trung bình là: x¯=49,5+48,9+51,4+51,1+49,3+48,7+50,8+50,7+51,2+50,2+48,8+50,6+48,7+49,8+50,9+49,6+48,8+49,2+51,3+51,2+50,7+51,4+50,4+51,1+50,1+50,0+48,6+50,5+51,2+49,6.130

 

x¯=15043300


Câu 8:

Tuổi thọ của một số linh kiện điện tử (đơn vị: năm) được sản cuất bởi hai phân xưởng được cho như sau:

Tuổi thọ của một số linh kiện điện tử (đơn vị: năm) được sản cuất bởi hai phân xưởng được cho như sau: (ảnh 1)

Tìm phương sai và độ lệch chuẩn của mỗi mẫu số liệu ghép nhóm và nhận xét về độ phân tán của tuổi thọ các linh kiện điện tử được sản xuất bởi mỗi phân xưởng.

Xem đáp án

Chọn giá trị đại diện cho mẫu số liệu ta có:

Tuổi thọ (năm)

[1,5; 2)

[2; 2,5)

[2,5; 3)

[3; 3,5)

[3,5; 4)

Giá trị đại diện

1,75

2,25

2,75

3,25

3,75

Số linh kiện của phân xưởng 1

4

9

13

8

6

Số linh kiện của phân xưởng 2

2

8

20

7

3

Tuổi thọ trung bình của các linh kiện của phân xưởng 1 là:

x1¯=4.1,75+9.2,25+13.2,75+8.3,25+6.3,754+9+13+8+6=2,7875.

Tuổi thọ trung bình của các linh kiện của phân xưởng 2 là:

x2¯=2.1,75+8.2,25+20.2,75+7.3,25+3.3,752+8+20+7+3=2,7625.

Phương sai và độ lệch chuẩn của các linh kiện của phân xưởng 1 là:

s12=4.1,752+9.2,252+13.2,752+8.3,252+6.3,752402,787520,355

Suy ra s1=s12=0,3550,596  .

Phương sai và độ lệch chuẩn của các linh kiện của phân xưởng 2 là:

s22=2.1,752+8.2,252+20.2,752+7.3,252+3.3,752402,762520,219.

Suy ra s2=0,2190,47.

Đối với mẫu số liệu này thì phương sai và độ lệch chuẩn nhỏ nên độ phân tán của số liệu thấp. Do đó các giá trị của mẫu số liệu tập trung quanh giá trị trung bình.


Câu 9:

Một nhóm 20 học sinh dùng một thiết bị đo đường kính của một nhân tế bào cho kết quả như sau:

Một nhóm 20 học sinh dùng một thiết bị đo đường kính của một nhân tế bào cho kết quả như sau: (ảnh 1)

a) Tính số trung bình và độ lệch chuẩn của mẫu số liệu ghép nhóm trên.

b) Số trung bình và độ lệch chuẩn cho biết thông tin gì?

Xem đáp án

Chọn giá trị đại diện cho mẫu số liệu ta có:

Kết quả đo (μm)

[4,5; 5)

[5; 5,5)

[5,5; 6)

[6; 6,5)

Giá trị đại diện

4,75

5,25

5,75

6,25

Số học sinh

3

8

7

2

a) x¯=4,75.3+5,25.8+5,75.7+6,25.220=5,45 .

s2=4,752.3+5,252.8+5,752.7+6,252.2205,452=0,185.

s=0,1850,43.


Câu 10:

b) Số trung bình và độ lệch chuẩn cho biết thông tin gì?

Xem đáp án

b) Dữ liệu cho thấy đường kính của các nhân tế bào có mức độ biến động nhỏ và gần giá trị trung bình. Điều này có thể thấy được mức độ đồng đều trong kích thước của các nhân tế bào hoặc quy trình đo lường được thực hiện một cách chính xác.


Câu 11:

Thời gian chạy tập luyện cự li 100m cuả hai vận động viên được cho trong bảng sau:

Thời gian chạy tập luyện cự li 100m cuả hai vận động viên được cho trong bảng sau: (ảnh 1)

Dựa trên độ lệch chuẩn của các mẫu số liệu ghép nhóm, hãy cho biết vận động viên nào có thành tích luyện tập ổn định hơn.

Xem đáp án

Chọn giá trị đại diện cho mẫu số liệu ta có:

Thời gian (giây)

[10; 10,3)

[10,3; 10,6)

[10,6; 10,9)

[10,9; 11,2)

Giá trị đại diện

10,15

10,45

10,75

11,05

Số lần chạy của A

2

10

5

3

Số lần chạy của B

3

7

9

6

Thời gian chạy trung bình của A là:

xA¯=10,15.2+10,45.10+10,75.5+11,05.320=10,585.

Thời gian chạy trung bình của B là:

xB¯=10,15.3+10,45.7+10,75.9+11,05.625=10,666.

Phương sai và độ lệch chuẩn của A là

sA2=10,152.2+10,452.10+10,752.5+11,052.32010,58520,067.

Suy ra sA=0,0670,26 .

Phương sai và độ lệch chuẩn của B là

sB2=10,152.3+10,452.7+10,752.9+11,052.62510,66620,083.

Suy ra sB=0,0830,29

Vận động viên A có độ lệch chuẩn nhỏ hơn so với vận động viên B. Điều này cho thấy thời gian chạy tập luyện của vận động viên A ít biến động hơn so với vận động viên B. Do đó vận động viên A có thành tích luyện tập ổn định hơn so với vận động viên B.


Câu 12:

Có nên dùng phương sai (hoặc độ lệch chuẩn) để so sánh độ phân tán của hai mẫu số liệu ghép nhóm trong mỗi trường hợp sau không? Tại sao?

a) Các mẫu số liệu ghép nhóm về điểm thi tốt nghiệp môn Toán của học sinh hai trường trung học phổ thông có chất lượng tương đương.

b) Các mẫu số liệu ghép nhóm về doanh thu của 100 cửa hàng bán lẻ và doanh thu của 100 siêu thị.

Xem đáp án

a) Trong trường hợp các mẫu số liệu ghép nhóm về đểm thi tốt nghiệp môn Toán của học sinh hai trường trung học phổ thông có chất lượng tương đương, phương sai hoặc độ lệch chuẩn có thể được sử dụng để so sánh độ phân tán của hai mẫu số liệu vì chất lượng hai trường là tương đương. Dùng phương sai hoặc độ lệch chuẩn giúp đánh giá mức độ biến động của điểm thi từ đó so sánh độ phân tán giữa hai trường.

b) Trong trường hợp này việc sử dụng phương sai hoặc độ lệch chuẩn để so sánh độ phân tán có thể không phản ánh đúng bản chất của dữ liệu. Vì doanh thu thường có phân phối không đồng đều, có nhiều yếu tố ảnh hưởng đến doanh thu của từng cửa hàng hoặc siêu thị. Do đó việc sử dụng phương sai hoặc độ lệch chuẩn không phải là phương pháp phù hợp để so sánh độ phân tán của doanh thu của hai nhóm này.



Bắt đầu thi ngay