Xét tất cả các số thực x, y sao cho a^4x-log 5 x^2 bé hơn bằng 25^40-y^2   đúng với mọi số thực dương a.

Xét tất cả các số thực x, y sao cho a4xlog5x22540y2  đúng với mọi số thực dương a. Giá trị lớn nhất của biểu thức P = x2 + y2 + x – 3y bằng:

Trả lời

Ta có:

a4xlog5x22540y2

⇔ log5a4xlog5a2log52540y2

⇔ 4x2log5alog5240y2

⇔ log52a2xlog5a+40y20 (*) 

Coi (*) là phương trình bậc hai ẩn log5a

Để (*) đúng với mọi số thực dương a thì:

∆' ≤ 0 x2 – (40 – y2) ≤ 0 x2 + y2 – 40 ≤ 0 (1)

Ta có biểu thức (1) là hình tròn (C1) tâm O(0;0), bán kình R1210

Mặt khác P = x2 + y2 + x – 3y x2 + y2 + x – 3y – P = 0 là phương trình đường trogn (C2) tâm I12;32 , bán kính R21210+4P

Media VietJack

Để tồn tại điểm chung của đường tròn (C1) và (C2) thì:

R2 ≤ R1 + OI  1210+4P ≤ 210  1210

10+4P510 P ≤ 60.

Vậy Pmax = 60.

Câu hỏi cùng chủ đề

Xem tất cả