Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB AC (B và C là hai tiếp điểm). Kẻ đường kính CD của đường tròn (O). a) Chứng minh OA ⊥ BC. b) Chứng minh: BD // OA. c) Kẻ BH ⊥ CD
32
12/05/2024
Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB AC (B và C là hai tiếp điểm). Kẻ đường kính CD của đường tròn (O).
a) Chứng minh OA ⊥ BC.
b) Chứng minh: BD // OA.
c) Kẻ BH ⊥ CD. Gọi K là giao điểm của BH và AD. Chứng minh K là trung điểm của BH.
Trả lời
Lời giải
a) Ta có OB = OC (=R).
Suy ra O thuộc đường trung trực của đoạn thẳng CB.
Ta có AB = AC (tính chất hai tiếp tuyến cắt nhau)
Suy ra A thuộc đường trung trực của đoạn thẳng BC.
Như vậy A, O thuộc đường trung trực của BC suy ra AO ⊥ BC (đpcm)
b) Ta có \[\widehat {CBD}\] = 90° (góc nội tiếp chắn nửa đường tròn)
⇒ BD ⊥ BC mà AO ⊥ BC (chứng minh trên)
⇒ BD // AO (đpcm)
c) Ta có KH // AC (vì cùng vuông góc CD).
Theo định lý Ta-let, ta có:
\[\frac{{{\rm{KH}}}}{{{\rm{AC}}}}{\rm{ = }}\frac{{{\rm{DH}}}}{{{\rm{DC}}}} \Rightarrow {\rm{KH = }}\frac{{{\rm{DH}}\,{\rm{.}}\,{\rm{AC}}}}{{{\rm{DC}}}}\] (1)
Xét ΔACO và ΔBHD có: \[\widehat {ACO} = \widehat {BHD} = 90^\circ \]
\[\widehat {ACO} = \widehat {BDO}\] (hai góc đồng vị, BD // AO)
⇒ ∆ACO ᔕ ∆BHD (g.g)
⇒ \[\frac{{AC}}{{BH}} = \frac{{CO}}{{HD}} \Rightarrow BH = \frac{{AC.HD}}{{CO}}\] (2)
Từ (1) và (2) ta có: \[\frac{{KH}}{{BH}} = \frac{{CO}}{{DC}} = \frac{1}{2}\].
Vậy BK = KH, K là trung điểm cạnh BH (đpcm).