Từ điểm P nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến PA, PB tới (O) với A, B là các tiếp điểm. Vẽ AH vuông góc với đường kính BC.
24
01/06/2024
Từ điểm P nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến PA, PB tới (O) với A, B là các tiếp điểm. Vẽ AH vuông góc với đường kính BC. Chứng minh PC cắt AH tại trung điểm I của AH.
Trả lời
Gọi D là giao điểm của đường thẳng AC và BP
I là giao điểm của PC và AH.
Ta có (BC là đường kính)
(kề bù) hay (1)
∆ABD vuông tại A (cmt) (2)
Mặt khác PA, PB là hai tiếp tuyến của (O) nên PA = PB và (3)
Từ (1), (2), (3) .
Do đó ∆APD cân tại P
Þ PA = PD, mà PA = PB (tính chất hai tiếp tuyến cắt nhau)
Þ PD = PB
Lại có DB // AH (^ BC).
Xét △PBC có: IH // PB (4) (định lí Ta-lét).
Tương tự △PCD có: AI // PD (5)
Từ (4), (5) (vì PB = PD).
Vậy PC cắt AH tại trung điểm I của AH.