Từ điểm A nằm ngoài đường tròn (O), vẽ tiếp tuyến AB đến (O) (B là tiếp điểm). Vẽ BE là đường kính của (O). Dựng đường cao BC của ∆OAB, tia BC cắt (O) tại D (D khác B). a) Chừng minh AD là t
45
12/05/2024
Từ điểm A nằm ngoài đường tròn (O), vẽ tiếp tuyến AB đến (O) (B là tiếp điểm). Vẽ BE là đường kính của (O). Dựng đường cao BC của ∆OAB, tia BC cắt (O) tại D (D khác B).
a) Chừng minh AD là tiếp tuyến của (O) và OA // DE.
b) Gọi F là giao điểm của AE và (O) (F khác E). Chứng minh AE . AF = AC . AO.
c) Gọi G là giao điểm của BF và ED, H là giao điểm của AE và BD, I là giao điểm của AB và DE. Chứng minh GH // AB và AB = AI.
Trả lời
Lời giải

a) Ta có: OB = OD (= R) nên ∆ODB cân tại O.
Mà OC là đường cao của ∆ODB.
Nên OC cũng là đường phân giác của ∆ODB.
⇒ ^BOC=^COD hay ^BOA=^AOD.
Xét ∆ABO và ∆ADO có:
OB = OD (= R)
^BOA=^AOD (chứng minh trên)
Cạnh OA chung
Do đó ∆ABO = ∆ADO (c.g.c)
Suy ra ^ABO=^ADO=90∘.
Do đó AD là tiếp tuyến của (O).
Ta có: ^DEB=12 sđ (1)
Lại có: ^BOD = sđ
Mà ^BOA = 12^BOD
Nên ^BOA = 12 sđ (2)
Từ (1) và (2) suy ra ^BOA=^DEO.
Mà hai góc này nằm ở vị trí đồng vị nên OA // DE.
b) Vì F thuộc đường tròn đường kính BE nên ^BFE=90∘
Xét ∆ABE vuông tại B có: BF là đường cao
Suy ra AE . AF = AB2
Chứng minh tương tự, ta có: AC . AO = AD2.
Mà AB = AD (tính chất hai tiếp tuyến cắt nhau)
Do đó AB2 = AD2
Suy ra: AE . AF = AC.AO.
c) Vì D thuộc đường tròn đường kính BE nên ^BDE=90∘.
Ta có: BD là đường cao của ∆BGE; EF là đường cao của ∆BGE.
Mà BD, EF cắt nhau tại H.
Do đó H là trực tâm của ∆BGE.
Suy ra: GH ⊥ BE; AB ⊥ BE
Nên GH // AB.
Xét ∆BIE có: BO = EO (= R); AO // EI (AO // DE).
Do đó AB = AI.