Trong mặt phẳng tọa độ Oxy,cho tam giác ABC biết A(2; 4), B(5; 1), C(-1; -2). Phép tịnh

Trong mặt phẳng tọa độ Oxy,cho ΔABC  biết A(2; 4), B(5; 1), C(−1; −2). Phép tịnh tiến theo vectơ \(\overrightarrow {BC} \) biến ΔABC thành ΔA'B'C' tương ứng các điểm. Tìm tọa độ trọng tâm G’ của ΔA'B'C'.

Trả lời

Ta có tọa độ trọng tâm tam giác ABC là G(2; 1); \(\overrightarrow {BC} = \left( { - 6; - 3} \right)\)

\({T_{\overrightarrow {BC} }}\left( G \right) = G'\left( {{x_G};{y_G}} \right) \Leftrightarrow \overrightarrow {GG'} = \overrightarrow {BC} \)

\[\left\{ \begin{array}{l}{x_G} = {x_{G'}} + {x_{\overrightarrow {BC} }} = 2 - 6 = - 4\\{y_G} = {y_{G'}} + {y_{\overrightarrow {BC} }} = 1 - 3 = - 2\end{array} \right.\]

Suy ra: G(–4; –2).

Câu hỏi cùng chủ đề

Xem tất cả