Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d1): y = –x + 2 và (d2): y = 1/4x. 1) Vẽ (d1) và (d2) trên cùng hệ trục tọa độ Oxy. 2) Lấy điểm B trên (d2) có hoành độ bằng –4. Viết phương trì

Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d1): y = –x + 2 và (d2): \(y = \frac{1}{4}x\).

1) Vẽ (d1) và (d2) trên cùng hệ trục tọa độ Oxy.

2) Lấy điểm B trên (d2) có hoành độ bằng –4. Viết phương trình đường thẳng (d3) song song với (d1) và qua điểm B.

3) Tìm tọa độ giao điểm của (d1) và (d2) bằng phép tính.

Trả lời

Lời giải

1) Bảng giá trị của (d1):

x

0

1

2

y

2

1

0

Bảng giá trị của (d2):

x

–4

0

4

y

–1

0

1

Media VietJack

2) Gọi B(–4; yB).

Ta có B(–4; yB) (d2).

Suy ra \(y = \frac{1}{4}.\left( { - 4} \right) = - 1\).

Do đó tọa độ B(–4; –1).

Vì (d3) // (d1) nên phương trình (d3) có dạng: y = –x + m (m ≠ 2).

Ta có B(–4; –1) (d3).

Suy ra –1 = 4 + m.

Do đó m = –5 (nhận)

Vậy phương trình (d3): y = –x – 5.

3) Phương trình hoành độ giao điểm của (d1) và (d2): \( - x + 2 = \frac{1}{4}x\).

\( \Leftrightarrow \frac{5}{4}x = 2\)

\( \Leftrightarrow x = \frac{8}{5}\).

Với \(x = \frac{8}{5}\), ta có: \(y = - \frac{8}{5} + 2 = \frac{2}{5}\).

Vậy giao điểm của (d1) và (d2) là điểm \(E\left( {\frac{8}{5};\frac{2}{5}} \right)\).

Câu hỏi cùng chủ đề

Xem tất cả