Tính tổng: An = 1 / (1.2.3) + 1 / (2.3.4) + 1 / (3.4.5) + + 1 / (n (n + 1) (n + 2))

Tính tổng :

\[{{\rm{S}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{1}}{\rm{.2}}{\rm{.3}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{2}}{\rm{.3}}{\rm{.4}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{3}}{\rm{.4}}{\rm{.5}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{\rm{n}}\left( {{\rm{n + 1}}} \right)\left( {{\rm{n + 2}}} \right)}}\]

Trả lời

\[{{\rm{S}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{1}}{\rm{.2}}{\rm{.3}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{2}}{\rm{.3}}{\rm{.4}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{3}}{\rm{.4}}{\rm{.5}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{\rm{n}}\left( {{\rm{n + 1}}} \right)\left( {{\rm{n + 2}}} \right)}}\]

\[{\rm{2}}{{\rm{S}}_{\rm{n}}}{\rm{ = }}\frac{{{\rm{3 - 1}}}}{{{\rm{1}}{\rm{.2}}{\rm{.3}}}}{\rm{ + }}\frac{{{\rm{4 - 2}}}}{{{\rm{2}}{\rm{.3}}{\rm{.4}}}}{\rm{ + }}\frac{{{\rm{5 - 3}}}}{{{\rm{3}}{\rm{.4}}{\rm{.5}}}}{\rm{ + }}...{\rm{ + }}\frac{{\left( {{\rm{n + 2}}} \right){\rm{ - n}}}}{{{\rm{n}}\left( {{\rm{n + 1}}} \right)\left( {{\rm{n + 2}}} \right)}}\]

\[{\rm{2}}{{\rm{S}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{1}}{\rm{.2}}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{2}}{\rm{.3}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{2}}{\rm{.3}}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{3}}{\rm{.4}}}}{\rm{ + }}\frac{{\rm{1}}}{{{\rm{3}}{\rm{.4}}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{4}}{\rm{.5}}}}{\rm{ + }}...{\rm{ + }}\frac{{\rm{1}}}{{{\rm{n}}\left( {{\rm{n + 1}}} \right)}}{\rm{ - }}\frac{{\rm{1}}}{{\left( {{\rm{n + 1}}} \right)\left( {{\rm{n + 2}}} \right)}}\]

\[{\rm{2}}{{\rm{S}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{1}}{\rm{.2}}}}{\rm{ - }}\frac{{\rm{1}}}{{\left( {{\rm{n + 1}}} \right)\left( {{\rm{n + 2}}} \right)}}\]

\[{{\rm{S}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{2}}\left( {{\rm{n + 1}}} \right)\left( {{\rm{n + 2}}} \right)}}\]

Câu hỏi cùng chủ đề

Xem tất cả