Tìm tập nghiệm của phương trình (x^2 - x - 6) + x = log (x + 2) + 4
Tìm tập nghiệm của phương trình \(\log \left( {{x^2} - x - 6} \right) + x = \log \left( {x + 2} \right) + 4.\)
Tìm tập nghiệm của phương trình \(\log \left( {{x^2} - x - 6} \right) + x = \log \left( {x + 2} \right) + 4.\)
ĐK: \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - x - 6 > 0}\\{x + 2 > 0}\end{array}} \right.\) ⇔ x > 3.
Khi đó \(\log \left( {{x^2} - x - 6} \right) + x = \log \left( {x + 2} \right) + 4\)
⇔ log(x + 2) + log(x – 3) + x = log(x + 2) + 4
⇔ log(x – 3) = 4 – x
⇔ x = 4 (thỏa mãn điều kiện)
Do vế trái là hàm đồng biến, vế phải là hàm nghịch biến nên phương trình có nghiệm duy nhất là x = 4.
Vậy S = {4}.