Tìm số tự nhiên n sao cho n^2 - 14n - 256 là một số chính phương

Tìm số tự nhiên n sao cho n2 – 14n – 256 là một số chính phương.

Trả lời

Giả sử n2 – 14n – 256 là một số chính phương

Suy ra: n2 – 14n – 256 = a2 (a *)

n2 – 14n – 256 – a2 = 0

n2 – 7n – 7n + 49 – 305 – a2 = 0

n(n – 7) – 7(n – 7) – 305 = a2

(n – 7)2 – a2 – 305 = 0

(n – 7 + a)(n – 7 – a) = 305

TH1:

n – 7 – a = 1; n – 7 + a = 305

n – a = 8; n + a = 312

2n = 320

n = 160

TH2:

n−7−a = 5; n – 7 + a = 61

n – a = 12; n + 1 = 68

2n = 80

n = 40.

Câu hỏi cùng chủ đề

Xem tất cả