Tìm số nguyên tố x, y thỏa mãn x^2 – 2y^2 = 1
Tìm số nguyên tố x, y thỏa mãn x2 – 2y2 = 1.
Tìm số nguyên tố x, y thỏa mãn x2 – 2y2 = 1.
Ta có: x2 – 2y2 = 1 ⇔ x2 = 2y2 + 1; \({y^2} = \frac{{{x^2} - 1}}{2}\).
Suy ra x2 là một số chính phương lẻ, x là số lẻ.
Đặt x = 2k + 1 (k nguyên dương).
Ta có \({y^2} = \frac{{{{\left( {2k + 1} \right)}^2} - 1}}{2} = \frac{{4{k^2} + 4k}}{2} = 2k(k + 1)\) (*)
Y là một số nguyên tố nên y2 sẽ là một số nguyên dương mà có duy nhất 3 ước là {1; y; y2}.
Từ (*) dễ thấy \({y^2} \vdots 2\) và do y là số nguyên tố nên suy ra y = 2 \( \Rightarrow \)k = 1 \( \Rightarrow \) x = 3.
Vậy x = 3 và y = 2 thỏa mãn yêu cầu bài toán.