Tìm hệ số của số hạng chứa x^10 trong khai triển f(x) = (1/4x^2 + x + 1)

Tìm hệ số của số hạng chứa x10 trong khai triển \(f\left( x \right) = {\left( {\frac{1}{4}{x^2} + x + 1} \right)^2}{\left( {x + 2} \right)^{3n}}\) với n là số tự nhiên thỏa mãn hệ thức \(A_n^3 + C_n^{n - 2} = 14n\)

Trả lời

ĐK: n ≥ 3; n Î+

\(A_n^3 + C_n^{n - 2} = 14n\)

\( \Leftrightarrow \frac{{n!}}{{\left( {n - 3} \right)!}} + \frac{{n!}}{{\left( {n - 2} \right)!\,.\,2!}} = 14n\)

\( \Leftrightarrow n\left( {n - 1} \right)\left( {n - 2} \right) + \frac{{n\left( {n - 1} \right)}}{2} = 14n\)

\( \Rightarrow \left( {n - 1} \right)\left( {n - 2} \right) + \frac{{n - 1}}{2} = 14\)

Û 2(n − 1)(n − 2) + n − 1 = 28

Û 2n2 − 2n − 4n + 4 + n − 1 = 28

Û 2n2 − 5n − 25 = 0

\( \Leftrightarrow \left[ \begin{array}{l}n = 5\;\;\;\;\left( {TM} \right)\\n = - \frac{5}{2}\;\left( {KTM} \right)\end{array} \right.\)

Khi đó xét khai triển: \(f\left( x \right) = {\left( {\frac{1}{4}{x^2} + x + 1} \right)^2}{\left( {x + 2} \right)^{15}}\)

\( = \frac{1}{{16}}{\left( {{x^2} + 4x + 4} \right)^2}{\left( {x + 2} \right)^{15}}\)

\( = \frac{1}{{16}}{\left( {x + 2} \right)^4}{\left( {x + 2} \right)^{15}} = \frac{1}{{16}}{\left( {x + 2} \right)^{19}}\)

\( = \frac{1}{{16}}\sum\limits_{k = 0}^{19} {C_{19}^k\,.\,{x^{19 - k}}\,.\,{2^k}} = \frac{1}{{16}}\sum\limits_{k = 0}^{19} {C_{19}^k\,.\,{2^k}\,.\,{x^{19 - k}}} \)

Hệ số của số hạng chứa x10 ứng với 19 − k = 10 Û k = 9

Vậy hệ số cần tìm là: \(\frac{1}{{16}}\,.\,C_{19}^9\,.\,{2^9} = {2^5}C_{19}^9\).

Câu hỏi cùng chủ đề

Xem tất cả