Tìm GTNN của biểu thức A = (x + 7) / (căn bậc hai x + 3)
ĐKXĐ: x > 0; x ≠ 9
\(A = \frac{{x + 7}}{{\sqrt x + 3}} = \sqrt x - 3 + \frac{{16}}{{\sqrt x + 3}} = \sqrt x + 3 + \frac{{16}}{{\sqrt x + 3}} - 6\)
Áp dụng BĐT Cô-si cho 2 số không âm \(\sqrt x + 3\) và \(\frac{{16}}{{\sqrt x + 3}}\) ta được:
\(\sqrt x + 3 + \frac{{16}}{{\sqrt x + 3}} \ge 2\sqrt {\left( {\sqrt x + 3} \right).\frac{{16}}{{\sqrt x + 3}}} = 2.4 = 8\)
\( \Rightarrow \sqrt x + 3 + \frac{{16}}{{\sqrt x + 3}} - 6 \ge 2 \Rightarrow A \ge 2\)
Dấu “=” xảy ra \( \Leftrightarrow \sqrt x + 3 = \frac{{16}}{{\sqrt x + 3}} \Leftrightarrow {\left( {\sqrt x + 3} \right)^2} = 16\)
\( \Leftrightarrow \left| {\sqrt x + 3} \right| = 4 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sqrt x + 3 = 4}\\{\sqrt x + 3 = - 4}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sqrt x = 1}\\{\sqrt x = - 7(L)}\end{array}} \right. \Leftrightarrow x = 1(TM)\)
Vậy \({A_{\min }} = 2\) khi x = 1.