Tìm các số không âm x,y sao cho biểu thức A đạt giá trị nhỏ nhất A = x + y - căn bậc hai của x - 3 . căn bậc hai của y - 2021
Tìm các số không âm x,y sao cho biểu thức A đạt giá trị nhỏ nhất
\[{\rm{A}} = x + y - \sqrt {x - 3} .\sqrt {y - 2021} \]
Tìm các số không âm x,y sao cho biểu thức A đạt giá trị nhỏ nhất
\[{\rm{A}} = x + y - \sqrt {x - 3} .\sqrt {y - 2021} \]
Lời giải
Điều kiện xác định: x ≥ 3, y ≥ 2021
Ta có:
\[{\rm{A}} = x + y - \sqrt {x - 3} .\sqrt {y - 2021} \]
\[{\rm{A}} = (x - 3) - 2.\sqrt {x - 3} .\frac{1}{2}\sqrt {y - 2021} + \frac{1}{4}(y - 2021) + \frac{3}{4}(y - 2021) + 2024\]
\[{\rm{A}} = {(\sqrt {x - 3} - \frac{1}{2}\sqrt {y - 2021} )^2} + \frac{3}{4}(y - 2021) + 2024\]
Vì \({\left( {\sqrt {x - 3} - \frac{1}{2}\sqrt {y - 2021} } \right)^2} \ge 0\), \(\frac{3}{4}(y - 2021) \ge 0\)
Nên \[{(\sqrt {x - 3} - \frac{1}{2}\sqrt {y - 2021} )^2} + \frac{3}{4}(y - 2021) + 2024 \ge 2024\]
Hay A ≥ 2024
Dấu “ =” xảy ra khi \(\left\{ \begin{array}{l}y - 2021 = 0\\\sqrt {x - 3} - \frac{1}{2}\sqrt {y - 2021} = 0\end{array} \right.\)
Suy ra \(\left\{ \begin{array}{l}y = 2021\\\sqrt {x - 3} - \frac{1}{2}\sqrt {y - 2021} = 0\end{array} \right.\)
Nên \(\left\{ \begin{array}{l}y = 2021\\x = 3\end{array} \right.\) (thỏa mãn)
Vậy biểu thức A đạt giá trị nhỏ nhất bằng 2024 khi x = 3, y = 2021.