Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có

Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có BC=3,  BAC^=300. Tính diện tích tam giác ABC

Trả lời

Xét bài toán: Tam giác ABC, điều kiện cần và đủ để hai trung tuyến kẻ từ BC vuông góc với nhau là: b2+c2=5a2.

Ta có: Gọi G là giao điểm của hai trung tuyến BM, CN. Áp dụng công thức trung tuyến ta có:

Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có (ảnh 1)

GB2=49BM2=19(2a2+2c2b2);    GC2=49CN2=19(2a2+2b2c2)

Áp dụng định lý Pythago cho tam giác vuông BGC, ta có: BG2+CG2=BC2

Khi đó ta có: 19(2a2+2c2b2)+19(2a2+2b2c2)=a24a2+b2+c2=9a2b2+c2=5a2.

Quay trở lại bài toán trên, xét tam giác ABC ta có:

a2=b2+c22bc.cosA=5a22bc.cosAbc=2a2cosA.

Khi đó: S=12bc.sinA=122a2cosA.sinA=a2tanA=33.

Câu hỏi cùng chủ đề

Xem tất cả