Số hạng nào chứa x với số mũ tự nhiên trong khai triển sau: a) ( căn bậc hai của 4/x + x)^10 b) ( x + 1/ căn bậc hai của 3/x)^13
21
19/05/2024
Số hạng nào chứa x với số mũ tự nhiên trong khai triển sau:
a) \({\left( {\sqrt[4]{x} + x} \right)^{10}}\)
b) \({\left( {x + \frac{1}{{\sqrt[3]{x}}}} \right)^{13}}\)
Trả lời
Lời giải
a) \({\left( {\sqrt[4]{x} + x} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k.{{\sqrt[4]{x}}^k}.{x^{10 - k}}} \)
\[ = \sum\limits_{k = 0}^{10} {C_{10}^k.{x^{\frac{k}{4}}}.{x^{10 - k}}} = \sum\limits_{k = 0}^{10} {C_{10}^k.{x^{\frac{k}{4} + 10 - k}}} \]
\[ = \sum\limits_{k = 0}^{10} {C_{10}^k.{x^{10 - \frac{{3k}}{4}}}} \]
Để số hạng chứa x có số mũ tự nhiên thì \(10 - \frac{{3k}}{4} \in \mathbb{N}\;\left( {0 \le k \le 10} \right)\)
Và \[0 < 10 - \frac{{3k}}{4} \le 10\]
\( \Rightarrow k \in U\left( 4 \right) = \left\{ {0;\;4;\;8} \right\}\).
Vậy số hạng chứa x với số mũ tự nhiên trong khai triển sau: \[C_{10}^0{x^{10}},\;C_{10}^4{x^7},\;C_{10}^8{x^4}\].
b) \({\left( {x + \frac{1}{{\sqrt[3]{x}}}} \right)^{13}} = \sum\limits_{k = 0}^{13} {C_{13}^k.{x^{13 - k}}.\frac{1}{{{{\sqrt[3]{x}}^k}}}} = \sum\limits_{k = 0}^{13} {C_{13}^k.{x^{13 - k}}.{x^{ - \frac{k}{3}}}} \)
\( = \sum\limits_{k = 0}^{13} {C_{13}^k.{x^{13 - \frac{{4k}}{3}}}} \).
Để số hạng chứa x có số mũ tự nhiên thì \(13 - \frac{{4k}}{3} \in \mathbb{N}\;\left( {0 \le k \le 13} \right)\)
Và \[0 < 13 - \frac{{4k}}{3} \le 13\]
\( \Rightarrow k \in U\left( 3 \right) = \left\{ {0;\;3;\;6;\;9} \right\}\).
Vậy số hạng chứa x với số mũ tự nhiên trong khai triển sau:
\[C_{13}^0{x^{13}},\;C_{13}^3{x^9},\;C_{13}^6{x^5},\;C_{13}^9x\].