Một viên bi được thả lăn từ đỉnh một cái dốc xuống chân dốc. Bi đi xuống nhanh dần và quãng đường mà bi đi được trong giây thứ i là: Si = 4i – 2 (m); i = 1; 2; ..n.

Một viên bi được thả lăn từ đỉnh một cái dốc xuống chân dốc. Bi đi xuống nhanh dần và quãng đường mà bi đi được trong giây thứ i là: Si = 4i – 2 (m); i = 1; 2; ..n.

1. Tính quãng đường mà bi đi được: trong giây thứ hai; sau hai giây.

2. Chứng minh rằng quãng đường mà tổng cộng mà bi đi được sau n giây (i và n là các số tự nhiên) là Ln = 2n2 (m) 

A. 2m, 4m.
B. 6m, 8m.
C. 4m, 6m.
D. 4m, 8m.

Trả lời

Đáp án đúng: B

1.

Quãng đường vật đi được trong giây thứ hai:

S2 = (4i – 2)|i = 2 = 4.2 – 2 = 6 (m).

Quãng đường vật đi được trong giây đầu tiên:

S1 = (4i – 2)|i = 1 = 4.1 – 2 = 2 (m).

Do đó quãng đường vật đi được sau hai giây:

L2 = S1 + S2 = 2 + 6 = 8 (m).

2.

Quãng đường vật đi được sau n giây là:

Ln = S1 + S2 + S3 + … + Sn

= (4.1 – 2) + (4.2 – 2) + (4.3 – 2) + …(4n – 2)

= 4(1 + 2 + 3 + … + n) – 2n

=4nn+122n

<=> Ln = 2n2 (đpcm).

Cách khác: chứng minh bằng quy nạp

- Khi n =1 thì L1 = 2.12 = 2 (đúng).

- Giả sử Ln = 2n2 đúng khi n = k, tức là Lk = 2k2.

Ta cần chứng minh Ln = 2n2 đúng với n = k + 1 hay Lk + 1 = 2(k + 1)2

Ta có: Lk + 1 = (S1 + … + S2) + Sk + 1 = 2k2 + [4(k + 1) – z] = 2k2 + 4k + 2

Hay Lk + 1 = 2(k2 + 2k + 1) = 2(k +1)

Vậy Ln = 2n2 (đpcm).

Câu hỏi cùng chủ đề

Xem tất cả