Một quả cầu nặng m = 100 g được treo ở đầu một sợi dây nhẹ, không co dãn, dài l = 1 m (đầu kia của dây cố định). Truyền cho quả cầu ở vị trí cân bằng một vận tốc đầu v0 theo phương ngang. Khi

Một quả cầu nặng m = 100 g được treo ở đầu một sợi dây nhẹ, không co dãn, dài l = 1 m (đầu kia của dây cố định). Truyền cho quả cầu ở vị trí cân bằng một vận tốc đầu v0 theo phương ngang. Khi dây treo nghiêng góc α =300 so với phương thẳng đứng thì gia tốc của quả cầu có phương ngang. Cho g = 10 m/s2, bỏ qua mọi ma sát.

a) Tìm vận tốc v0.

b) Tính lực căng dây và vận tốc của vật tại vị trí có góc lệch a = 400.

Trả lời

Lời giải

a. Khi dây treo nghiêng góc \(\alpha = {30^0}\) so với phương thẳng đứng, vật M chịu tác dụng của các lực như hình vẽ. Do gia tốc có phương ngang nên

T . cos 300 = m.g (1)

Mặt khác, xét theo phương hướng tâm MO ta có:

\(T - mg.cos{30^0} = \frac{{m{v^2}}}{\ell }\) (2) (Với v là vận tốc của vật tại M)

Từ (1) và (2) suy ra: \({v^2} = \frac{{g\ell }}{{2\sqrt 3 }}\,\,(3)\)

Áp dụng ĐLBT cơ năng cho hệ khi vật ở vị trí M và khi vật ở vị trí cân bằng ta được:

\(v_0^2 = {v^2} + 2g\ell \left( {1 - cos{{30}^0}} \right) = \frac{{12 - 5\sqrt 3 }}{6}g\ell \)

\( \Rightarrow {v_0} = 2,36\,m/s\)

b. Áp dụng ĐLBT cơ năng cho hệ khi vật ở vị trí \(\alpha = {40^0}\)và khi vật ở vị trí cân bằng ta được:

\(v_0^2 = {v^2} + 2g\ell \left( {1 - cos{{40}^0}} \right)\)\( \Rightarrow v = \sqrt {v_0^2 - 2g\ell \left( {1 - cos{{40}^0}} \right)} \approx 0,94\,m/s\)

Xét theo phương sợi dây ta có:

T = m.g.cos400 + \(\frac{{m{v^2}}}{\ell }\)= 0,1.10.cos400 + \(\frac{{{{0,1.0,94}^2}}}{1} = 0,86\,N\)

Câu hỏi cùng chủ đề

Xem tất cả