Một con lắc đơn có chiều dài dây treo bằng 60cm đang dao động điều hòa

Một con lắc đơn có chiều dài dây treo bằng \(60\;{\rm{cm}}\) đang dao động điều hòa. Khi dây treo hợp với phương thẳng đứng một góc \({8^^\circ }\) thì tốc độ của vật là \(20\;{\rm{cm}}/{\rm{s}}\). Lấy \(g = 9,8\;{\rm{m}}/{{\rm{s}}^2}\). Góc lệch nhỏ nhất giữa dây treo so với phương nằm ngang bằng

A. \(80,{7^^\circ }\).
B. \(81,{3^^\circ }\).
C. \(9,{3^^\circ }\).

D. \(8,{7^^\circ }\).

Trả lời

\[\left\{ \begin{array}{l}S_0^2 = {s^2} + \frac{{{v^2}}}{{{\omega ^2}}}\\\omega = \sqrt {\frac{g}{l}} \\{S_0} = {\alpha _0}l\\s = \alpha .l\end{array} \right. \Rightarrow {\alpha _0} = \sqrt {{\alpha ^2} + \frac{{{v^2}}}{{g.l}}} = 9,{3^0}\]. Suy ra góc lệch nhỏ nhất của dây treo và phương ngang \(\beta = {90^0} - 9,{3^0} = 80,{7^0}\). Đáp án A.

Câu hỏi cùng chủ đề

Xem tất cả