Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi chỉ khác nhau về màu sắc

Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi chỉ khác nhau về màu sắc). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Khi tính xác suất của biến cố “Lấy lần thứ hai được một viên bi xanh”, ta được kết quả:

A.\(\frac{5}{8}\)

B.\(\frac{5}{9}\)

C.\(\frac{5}{7}\)

D.\(\frac{4}{7}\).

Trả lời

Đáp án đúng là: A

Gọi A là biến cố “Lấy lần thứ hai được một viên bi xanh”. Có hai trường hợp xảy ra

Biến cố B: Lấy lần thứ nhất được bi xanh, lấy lần thứ hai cũng được một bi xanh

Xác suất trong trường hợp này là \({P_B} = \frac{5}{8}.\frac{4}{7} = \frac{5}{{14}}\)

Biến cố C: Lấy lần thứ nhất được bi đỏ, lấy lần thứ hai được bi xanh

Xác suất trong trường hợp này là \({P_C} = \frac{3}{8}.\frac{5}{7} = \frac{{15}}{{56}}\)

Ta thấy 2 biến cố B và C là xung khắc nên \({P_A} = {P_B} + {P_C} = \frac{5}{{14}} + \frac{{15}}{{56}} = \frac{5}{8}\)

Vậy ta chọn đáp án A.

Câu hỏi cùng chủ đề

Xem tất cả