ho mẫu số liệu ghép nhóm thống kế thời gian sử dụng điện thoại trước khi ngủ (đơn vị: phút) của một người trong 120 ngày như ở Bảng 8. Xác định các số đặc trưng đo xu thế trung tâm cho mẫu số

Cho mẫu số liệu ghép nhóm thống kế thời gian sử dụng điện thoại trước khi ngủ (đơn vị: phút) của một người trong 120 ngày như ở Bảng 8. Xác định các số đặc trưng đo xu thế trung tâm cho mẫu số liệu đó (làm tròn các kết quả đến hàng phần mười).

Nhóm

Tần số

[0 ; 4)

13

[4 ; 8)

29

[8 ; 12)

48

[12 ; 16)

22

[16 ; 20)

8

 

n = 120

Bảng 8

Trả lời

Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy của mẫu số liệu được cho như sau:

Nhóm

Giá trị đại diện

Tần số

Tần số tích lũy

[0 ; 4)

2

13

13

[4 ; 8)

6

29

42

[8 ; 12)

10

48

90

[12 ; 16)

14

22

112

[16 ; 20)

18

8

120

 

 

n = 120

 

Số trung bình cộng là:

 x¯=132+296+4810+2214+8181209,4.

Ta có:  n2=1202=60,n4=30,3n4=90.    

Vì 42 < 60 < 90 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 60.

Xét nhóm 3 là nhóm [8 ; 12) có r = 8, d  = 4, n3 = 48 và nhóm 2 là nhóm [4 ; 8) có cf2 = 42. Suy ra trung vị là:

 Me=8+6042484=9,5.

Tứ phân vị thứ 2 là: Q2 = Me = 9,5

Vì 13 < 30 < 42 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.

Xét nhóm 2 là nhóm [4; 8) có s = 4, h  = 4, n2 = 29 và nhóm 1 là nhóm [0 ; 4) có cf1 = 13. Suy ra tứ phân vị thứ nhất là:

 Q1=4+30132946,3.

Vì 42 < 90 ≤ 90 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 90. Xét nhóm 3 là nhóm [8 ; 12) có t = 8, l  = 4, n3 = 48 và nhóm 2 là nhóm [4 ; 8) có cf2 = 42. Suy ra tứ phân vị thứ ba là:

 Q3=8+9042484=12.

Ta thấy nhóm 3 ứng với nửa khoảng [8 ; 12) là nhóm có tần số lớn nhất với u = 8, g = 4, n3 = 48; nhóm 2 là nhóm [4; 8) có n2 = 29 và nhóm 4 là nhóm [12 ; 16) có n4 = 22. Suy ra mốt là:

 MO=8+4829248292249,7.

Câu hỏi cùng chủ đề

Xem tất cả