Hàm số y = f(x^2 + 2x) nghịch biến trên khoảng nào x - vô cùng -2 1 3 + vô cùng

Hàm số y = f(x2 + 2x) nghịch biến trên khoảng nào?

x

–∞

–2

1

3                    +∞

f'(x)

0           +

0            

0           

Trả lời

y = f(x2 + 2x)

y' = (2x + 2)f'(x2 + 2x)

Xét y' = 0 ta có: (2x + 2)f'(x2 + 2x) = 0

\(\left[ \begin{array}{l}2x + 2 = 0\\f'\left( {{x^2} + 2x} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\{x^2} + 2x = - 2\\{x^2} + 2x = 1\\{x^2} + 2x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\\x = - 3\\x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\)

Ta có bảng biến thiên:

Hàm số y = f(x^2 + 2x) nghịch biến trên khoảng nào x - vô cùng -2 1 3 + vô cùng (ảnh 1)

Vậy hàm số nghịch biến trên (–3; –1) và (1; +∞)

Câu hỏi cùng chủ đề

Xem tất cả