Gọi x0,y0,z0 là ba số thực dương sao cho biểu thức  P= 3/2x+y+ căn8yz -8/ căn 2(x^2+y^2+z^2)+4xz+3- 1/x+y+z đạt giá trị nhỏ nhất.

Gọi x0,y0,z0  là ba số thực dương sao cho biểu thức P=32x+y+8yz82(x2+y2+z2)+4xz+31x+y+z

 đạt giá trị nhỏ nhất.

Tổng x0+y0+z0   bằng

A. 3

B. 1

C. 33

D. 32

Trả lời

Hướng dẫn giải

Ta có P=32x+y+22yz82y2+2(x+z)2+31x+y+z

32(x+y+z)8(x+y+z)+31x+y+z.

Đặt x+y+z=t>0 . Khi đó  P=f(t)=12t8t+3,(t>0).

Ta có f'(t)=3(t1)(5t+3)2t2(t+3)2=0t=1  .

Bảng biến thiên

Gọi  x0,y0,z0 là ba số thực dương sao cho biểu thức  P= 3/2x+y+ căn8yz -8/ căn 2(x^2+y^2+z^2)+4xz+3- 1/x+y+z đạt giá trị nhỏ nhất. (ảnh 1)

Suy ra P32 . Dấu “=” xảy ra x+y+z=1y=2zy=x+zx=z=14y=12 .

Do đó x0+y0+z0=14+14+12=1.  Chọn B.

Câu hỏi cùng chủ đề

Xem tất cả