Gieo một con xúc xắc cân đối đồng chất 2 lần, tính xác suất để biến cố có tích

Gieo một con xúc xắc cân đối đồng chất 2 lần, tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.

A. 0,25;

B. 0,5;

C. 0,75;

D. 0,85.

Trả lời

Vì một con xúc xắc có 6 mặt và khi gieo hai lần thì số phần tử của không gian mẫu là \(\left| \Omega \right| = \left| {6\,.\,6} \right| = 36\).

Gọi A là biến cố để tích hai lần số chấm khi gieo xúc xắc là một số chẵn.

Trường hợp 1: 

Ở lần gieo thứ nhất số chấm xuất hiện trên mặt là số lẻ thì trong lần gieo thứ 2 số chấm xuất hiện phải là số chẵn nên có 3 . 3 = 9 (cách gieo).

Trường hợp 2:

Lần gieo thứ nhất số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ  hoặc số chẵn.

 Khi đó có 3 . 3 + 3 . 3 = 18 (cách gieo).

Suy ra số kết quả thuận lợi cho biến cố A là: \(\left| \Omega \right| = 9 + 18 = 27\)

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{27}}{{36}} = 0,75\).

Đáp án đúng là: C.

Câu hỏi cùng chủ đề

Xem tất cả