Giải phương trình: x^2 - y^2 + 2x - 4y - 10 = 0 với x, y nguyên dương
Giải phương trình: \({x^2} - {y^2} + 2x - 4y - 10 = 0\) với x, y nguyên dương.
Giải phương trình: \({x^2} - {y^2} + 2x - 4y - 10 = 0\) với x, y nguyên dương.
PT \( \Leftrightarrow \left( {{x^2} + 2x + 1} \right) - \left( {{y^2} + 4y + 4} \right) = 7\)
\( \Leftrightarrow {\left( {x + 1} \right)^2} - {\left( {y + 2} \right)^2} = 7 \Leftrightarrow \left( {x + y + 3} \right)\left( {x - y - 1} \right) = 7\)
Mặt khác, x, y > 0 ⇒ x + y + 3 > x – y – 1 và x + y +3 > 0
Nên ta có cặp nghiệm duy nhất sau: \(\left\{ {\begin{array}{*{20}{c}}{x + y + 3 = 7}\\{x - y - 1 = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + y = 4}\\{x - y = 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 3}\\{y = 1}\end{array}} \right.\).