Giải phương trình (x^2 − 1)(x^2 + 4x + 3) = 192
Giải phương trình (x2 − 1)(x2 + 4x + 3) = 192
Giải phương trình (x2 − 1)(x2 + 4x + 3) = 192
Biến đổi phương trình thành:
(x2 – 1)(x + 1)(x + 3) = 192 ⇔ (x – 1)(x + 1)2 (x + 3) = 192
Đặt x + 1 = y, phương trình trở thành:
(y – 2)y2 (y + 2) = 192 ⇔ y2(y2 – 4) = 192
Đặt y2 – 2 = z thì z + 2 ≥ 0, phương trình trở thành:
(z + 2)(z – 2) = 192 ⇔ z2 = 196 ⇔ z = ±14
Loại z = -14 vì trái với điều kiện z + 2 ≥ 0
Với z = 14 thì y2 = 16, do đó y = ±4
Với y = 4 thì x + 1 = 4 nên x = 3
Với y = -4 thì x + 1 = -4 nên x = -5
Vậy phương trình có nghiệm là {3; -5}.