Giải phương trình x^2 - 1 = 2 căn bậc hai của 2x + 1
Lời giải
Ta có:
\[ \Leftrightarrow {x^2} - 1 + 2x + 2 = 2\sqrt {2x - 1} + 2x + 2\]
\[ \Leftrightarrow {x^2} + 2x + 1 = 2x + 1 + 2\sqrt {2x + 1} + 1\]
\( \Leftrightarrow {\left( {x + 1} \right)^2} = {\left( {\sqrt {2x + 1} + 1} \right)^2}\)
\[ \Leftrightarrow \left[ \begin{array}{l}x + 1 = \sqrt {2x + 1} + 1\\x + 1 = - \left( {\sqrt {2x + 1} + 1} \right)\end{array} \right.\]
\[ \Leftrightarrow \left[ \begin{array}{l}x = \sqrt {2x + 1} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\x + \sqrt {2x + 1} + 2 = 0\,\,\,\,\left( 2 \right)\end{array} \right.\]
Giải (1): \[x = \sqrt {2x + 1} \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} = 2x + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} - 2x - 1 = 0\end{array} \right.\]
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} - 2x + 1 - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{\left( {x - 1} \right)^2} = 2\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{\left( {x - 1} \right)^2} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\\left[ \begin{array}{l}x - 1 = \sqrt 2 \\x - 1 = - \sqrt 2 \end{array} \right.\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\\left[ \begin{array}{l}x = 1 + \sqrt 2 \\x = 1 - \sqrt 2 \end{array} \right.\end{array} \right. \Leftrightarrow x = 1 + \sqrt 2 \)
Kết hợp điều kiện \(x \ge - \frac{1}{2}\) ta có: \(x = 1 + \sqrt 2 \).
Do đó phương trình (1) có 1 nghiệm là \(x = 1 + \sqrt 2 \).
Giải (2): \[x + \sqrt {2x + 1} + 2 = 0\]
Với \(x \ge - \frac{1}{2}\) thì \(\left\{ \begin{array}{l}\sqrt {2x - 1} \ge 0\\x + 2 \ge \frac{3}{2}\end{array} \right. \Rightarrow x + \sqrt {2x + 1} + 2 > 0\)
Do đó phương trình (2) vô nghiệm.
Vậy phương trình đã cho có tập nghiệm là \(S = \left\{ {1 + \sqrt 2 } \right\}\).