Giải phương trình: căn bậc hai (4x^2 + 5c + 1) - 2 căn bậc hai (x^2 - x + 1) = 9x - 3

Giải phương trình: \(\sqrt {4{x^2} + 5x + 1} - 2\sqrt {{x^2} - x + 1} = 9x - 3\).

Trả lời

Đặt \(\sqrt {4{x^2} + 5x + 1} = a;\sqrt {{x^2} - x + 1} = b\) (a, b ≥ 0).

Ta có: \({a^2} - 4{b^2} = 4{x^2} + 5x + 1 - 4\left( {{x^2} - x + 1} \right) = 9x - 3\).

Khi đó từ phương trình đã cho ta suy ra a – 2b = \({a^2} - 4{b^2}\)

a – 2b = (a – 2b)(a + 2b)

(a – 2b)(1 – a – 2b) = 0

\( \Leftrightarrow \left[ \begin{array}{l}a = 2b\\a = 1 - 2b\end{array} \right.\).

TH1: a = 2b

\(\sqrt {4{x^2} + 5x + 1} = 2\sqrt {{x^2} - x + 1} \Rightarrow 9x = 3 \Rightarrow x = \frac{1}{3}\)

TH2: a = 1 – 2b

\( \Rightarrow \sqrt {4{x^2} + 5x + 1} = 1 - 2\sqrt {{x^2} - x + 1} \)

\( \Leftrightarrow 4{x^2} + 5x + 1 = 1 - 4\sqrt {{x^2} - x + 1} + 4{x^2} - 4x + 4\)

\( \Leftrightarrow 4\sqrt {{x^2} - x + 1} = 4 - 9x\)

\( \Leftrightarrow \left\{ \begin{array}{l}4 - 9x \ge 0\\16{x^2} - 16x + 16 = 16 - 72x + 81{x^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{4}{9}\\65{x^2} - 56x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{4}{9}\\x\left( {65x - 56} \right) = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \le \frac{4}{9}\\\left[ \begin{array}{l}x = 0\,\,\\x = \frac{{56}}{{65}}\,\,\end{array} \right.\end{array} \right. \Leftrightarrow x = 0\)

Thử lại ta thấy \(x = \frac{1}{3}\) thỏa mãn phương trình đã cho.

Vậy \(x = \frac{1}{3}\) là nghiệm của phương trình.

Câu hỏi cùng chủ đề

Xem tất cả