Giá trị nào của m để điểm I(−1; 6) là điểm cực đại của đồ thị hàm số y = x^3 − 3mx^2 − 9x + 1 (Cm).
Lời giải
Ta có \[y' = 3{x^2} - 6mx - 9\].
Để I(−1; 6) là điểm cực đại của đồ thị hàm số y = x3 − 3mx2 − 9x + 1 (Cm) thì trước hết x = −1 là nghiệm của phương trình 3x2 − 6mx − 9 = 0.
Û 3(−1)2 − 6m(−1) − 9 = 0
Û 3 + 6m − 9 = 0
Û m = 1.
Thử lại với m = 1 ta được:
\[y = {x^3} - 3{x^2} - 9x + 1\] (Cm)
Khi đó với x = −1 ta có y = 6. Vây I(−1; 6) là điểm thuộc đồ thị hàm số.
Lại có \[y' = 3{x^2} - 6x - 9 = 3\left( {x + 1} \right)\left( {x - 3} \right) = 0\]
\[ \Rightarrow \left[ \begin{array}{l}x + 1 = 0\\x - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 3\end{array} \right.\]
Ta xét BBT:
Dựa vào BBT ta thấy x = −1 là điểm cực địa của đồ thị hàm số
Vậy để điểm I(−1; 6) là điểm cực đại của đồ thị hàm số y = x3 − 3mx2 − 9x + 1 (Cm) thì m = 1.