Giá trị nào của m để điểm I(−1; 6) là điểm cực đại của đồ thị hàm số y = x^3 − 3mx^2 − 9x + 1 (Cm).
Giá trị nào của m để điểm I(−1; 6) là điểm cực đại của đồ thị hàm số y = x3 − 3mx2 − 9x + 1 (Cm).
Lời giải
Ta có y′=3x2−6mx−9.
Để I(−1; 6) là điểm cực đại của đồ thị hàm số y = x3 − 3mx2 − 9x + 1 (Cm) thì trước hết x = −1 là nghiệm của phương trình 3x2 − 6mx − 9 = 0.
Û 3(−1)2 − 6m(−1) − 9 = 0
Û 3 + 6m − 9 = 0
Û m = 1.
Thử lại với m = 1 ta được:
y=x3−3x2−9x+1 (Cm)
Khi đó với x = −1 ta có y = 6. Vây I(−1; 6) là điểm thuộc đồ thị hàm số.
Lại có y′=3x2−6x−9=3(x+1)(x−3)=0
⇒[x+1=0x−3=0⇔[x=−1x=3
Ta xét BBT:
Dựa vào BBT ta thấy x = −1 là điểm cực địa của đồ thị hàm số
Vậy để điểm I(−1; 6) là điểm cực đại của đồ thị hàm số y = x3 − 3mx2 − 9x + 1 (Cm) thì m = 1.