Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất

Cho hàm số f(x) có bảng biến thiên như sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?

A. 15

B. 14

C. 13

D. 12.

Trả lời

Đáp án đúng là: A

Phương trình: 3f(x2 – 4x) = m                                (1)

Đặt u = x2 – 4x

Ta có bảng biến thiên sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 2)

Ta thấy:

+) Với u < –4, phương trình (1) vô nghiệm

+) Với u = –4, phương trình (1) có một nghiệm x = 2 > 0

+) Với –4 < u < 0, phương trình (1) có hai nghiệm x > 0

+) Với u ≥ 0, phương trình (1) có một nghiệm x > 0

Khi đó 3f(x2 – 4x) = m             

f(u)=m3                  (2)

Ta thấy:

+) Nếu m3=3m=9 thì phương trình (2) có một nghiệm u = 0

Nên phương trình (1) có một nghiệm x > 0

+) Nếu 3<m3<29<m<6 thì phương trình (2) có một nghiệm u > 0 và một nghiệm u (–2; 0)

Nên phương trình (1) có ba nghiệm x > 0

+) Nếu m3=2m=6 thì phương trình (2) có một nghiệm u = –4, một nghiệm u (–2; 0) và một nghiệm u > 0

Nên phương trình (1) có bốn nghiệm x > 0

+) Nếu 2<m3<26<m<6 thì phương trình (2) có một nghiệm u < –4, hai nghiệm u (–4; 0) và một nghiệm u > 0

Nên phương trình (1) có năm nghiệm x > 0

+) Nếu m3=2m=6 thì phương trình (2) có một nghiệm u < –4, một nghiệm u = –2 và một nghiệm u > 0

Nên phương trình (1) có ba nghiệm x > 0

+) Nếu m3>2m>6 thì phương trình (2) có một nghiệm u < –4 và một nghiệm u > 0

Nên phương trình (1) có một nghiệm x > 0

Suy ra –9 < m ≤ 6

Do đó m {–8; –7; –6; –5; –4; –3; –2; –1; 0; 1; 2; 3; 4; 5; 6}

Vậy ta chọn đáp án A.

Câu hỏi cùng chủ đề

Xem tất cả