Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x^3 − 3(m + 2)x^2 + 3(m^2 + 4m)x + 1 nghịch biến trên khoảng (0; 1).

Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1).

Trả lời

y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1

y′ = 3x2 − 6(m + 2)x + 3(m2 + 4m)

Hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0;1) 

f ′(x) ≤ 0, x (0;1) và bằng 0 tại hữu hạn điểm trên (0;1).

3x2 − 6(m + 2)x + 3(m2 + 4m) ≤ 0, x (0;1) và bằng 0 tại hữu hạn điểm trên (0;1).

Xét phương trình 3x2 − 6(m + 2)x + 3(m2 + 4m) = 0 ()

Δ′ = 9(m +2)2 − 3.3.(m2 + 4m) = 36 > 0, m

Þ Phương trình (*) có 2 nghiệm phân biệt x1, x2.

Để hàm số nghịch biến trên khoảng (0;1) thì x1 ≤ 0 < 1 ≤ x2

x1x20                      (1x1)(1x2)0x1x20                                 1+x1x2(x1+x2)0

m2+4m0                             1+m2+4m2m404m03m13m0

m nên m3;2;1;0.

Vậy có 4 giá trị nguyên m thỏa mãn.

Câu hỏi cùng chủ đề

Xem tất cả