Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x^3 − 3(m + 2)x^2 + 3(m^2 + 4m)x + 1 nghịch biến trên khoảng (0; 1).
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1).
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1).
y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1
⇒ y′ = 3x2 − 6(m + 2)x + 3(m2 + 4m)
Hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0;1)
⇔ f ′(x) ≤ 0, ∀x ∈ (0;1) và bằng 0 tại hữu hạn điểm trên (0;1).
⇔ 3x2 − 6(m + 2)x + 3(m2 + 4m) ≤ 0, ∀x ∈ (0;1) và bằng 0 tại hữu hạn điểm trên (0;1).
Xét phương trình 3x2 − 6(m + 2)x + 3(m2 + 4m) = 0 (∗)
Δ′ = 9(m +2)2 − 3.3.(m2 + 4m) = 36 > 0, ∀m
Þ Phương trình (*) có 2 nghiệm phân biệt x1, x2.
Để hàm số nghịch biến trên khoảng (0;1) thì x1 ≤ 0 < 1 ≤ x2
Mà nên .
Vậy có 4 giá trị nguyên m thỏa mãn.