Chứng minh rằng: a) sin alpha + cos alpha = căn bậc hai cos (alpha - pi/4)
16
11/06/2024
Chứng minh rằng:
a) \(\sin \alpha + \cos \alpha = \sqrt 2 \cos \left( {\alpha - \frac{\pi }{4}} \right) = \sqrt 2 \sin \left( {\alpha + \frac{\pi }{4}} \right)\);
b) \(\sin \alpha - \cos \alpha = \sqrt 2 \sin \left( {\alpha - \frac{\pi }{4}} \right) = - \sqrt 2 \cos \left( {\alpha + \frac{\pi }{4}} \right)\).
Trả lời
a) Ta có:
\(\sqrt 2 \cos \left( {\alpha - \frac{\pi }{4}} \right) = \sqrt 2 \left( {\cos \alpha \cos \frac{\pi }{4} + \sin \alpha \sin \frac{\pi }{4}} \right)\)
\( = \sqrt 2 \left( {\cos \alpha .\frac{{\sqrt 2 }}{2} + \sin \alpha .\frac{{\sqrt 2 }}{2}} \right)\)
\( = \sqrt 2 \frac{{\sqrt 2 }}{2}\left( {\cos \alpha + \sin \alpha } \right)\)
= cosα + sin α (1)
\(\sqrt 2 \sin \left( {\alpha + \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin \alpha \cos \frac{\pi }{4} + \cos \alpha \sin \frac{\pi }{4}} \right)\)
\[ = \sqrt 2 \left( {\sin \alpha .\frac{{\sqrt 2 }}{2} + \cos \alpha .\frac{{\sqrt 2 }}{2}} \right)\]
\( = \sqrt 2 \frac{{\sqrt 2 }}{2}\left( {\sin \alpha + \cos \alpha } \right)\)
= sin α + cosα (2)
Từ (1) và (2) \( \Rightarrow \sin \alpha + \cos \alpha = \sqrt 2 \cos \left( {\alpha - \frac{\pi }{4}} \right) = \sqrt 2 \sin \left( {\alpha + \frac{\pi }{4}} \right)\) (đccm);
b) Ta có: \(\sqrt 2 \sin \left( {\alpha - \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin \alpha \cos \frac{\pi }{4} - \cos \alpha \sin \frac{\pi }{4}} \right)\)
\( = \sqrt 2 \left( {\cos \alpha .\frac{{\sqrt 2 }}{2} - \sin \alpha .\frac{{\sqrt 2 }}{2}} \right)\)
\( = \sqrt 2 \frac{{\sqrt 2 }}{2}\left( {\cos \alpha - \sin \alpha } \right)\)
= cosα – sin α (3)
\( - \sqrt 2 \cos \left( {\alpha - \frac{\pi }{4}} \right) = - \sqrt 2 \left( {\sin \alpha \cos \frac{\pi }{4} - \cos \alpha \sin \frac{\pi }{4}} \right)\)
\[ = - \sqrt 2 \left( {\sin \alpha .\frac{{\sqrt 2 }}{2} - \cos \alpha .\frac{{\sqrt 2 }}{2}} \right)\]
\( = - \sqrt 2 \frac{{\sqrt 2 }}{2}\left( {\sin \alpha - \cos \alpha } \right)\)
= – (sin α – cosα) = cosα – sin α (4)
Từ (3) và (4) \( \Rightarrow \sin \alpha - \cos \alpha = \sqrt 2 \sin \left( {\alpha - \frac{\pi }{4}} \right) = - \sqrt 2 \cos \left( {\alpha + \frac{\pi }{4}} \right)\) (đpcm).