Chứng minh rằng: 1/a^2+1/b^2+2 lớn hơn bằng 8/a+b
Chứng minh rằng: 1a2+1b2+2≥8a+b
Chứng minh rằng: 1a2+1b2+2≥8a+b
Ta có:
1a2+1b2≥2⋅1a⋅1b⇔2(1a2+1b2)≥1a2+1b2+2⋅1a⋅1b⇔2(1a2+1b2)≥(1a+1b)2(1)
Mặt khác:
(1a+1b−2)2≥0⇔(1a+1b)2−4(1a+1b)+4≥0⇔(1a+1b)2+4≥4(1a+1b)(2)
Lại có: (a + b)2 ≥ 4ab
⇔a+bab≥4a+b⇔1a+1b≥4a+b(3)Từ (1), (2), (3) ⇒ 2(1a2+1b2)+4≥(1a+1b)2+4≥4(1a+1b)≥16a+b
⇔1a2+1b2+2≥8a+b (với a, b > 0)