Hoặc
Chứng minh rằng: 1a2+1b2+2≥8a+b
Ta có:
1a2+1b2≥2⋅1a⋅1b⇔21a2+1b2≥1a2+1b2+2⋅1a⋅1b⇔21a2+1b2≥1a+1b2(1)
Mặt khác:
1a+1b−22≥0⇔1a+1b2−41a+1b+4≥0⇔1a+1b2+4≥41a+1b(2)
Lại có: (a + b)2 ≥ 4ab
Từ (1), (2), (3) ⇒ 21a2+1b2+4≥1a+1b2+4≥41a+1b≥16a+b
⇔1a2+1b2+2≥8a+b (với a, b > 0)