Cho x, y, z > 0 thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của Q = x / (x + căn bậc hai x
40
08/05/2024
Cho x, y, z > 0 thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của
\(Q = \frac{x}{{x + \sqrt {x + yz} }} + \frac{y}{{y + \sqrt {y + zx} }} + \frac{z}{{z + \sqrt {z + xy} }}\).
Trả lời
Ta có: x + yz = x(x + y + z) + yz
= x2 + yz + x(y + z) = A
Áp dụng bất đẳng thức Cô-si ta có:
A \( \ge 2x\sqrt {yz} + x\left( {y + z} \right)\left( {{x^2} + yz \ge 2\sqrt {{x^2}yz} } \right)\)\( = x{\left( {\sqrt y + \sqrt z } \right)^2}\).
Hay \(x + yz \ge x{\left( {\sqrt y + \sqrt z } \right)^2}\).
Tương tự ta có: \(y + zx \ge y{\left( {\sqrt z + \sqrt x } \right)^2}\);
\(z + xy \ge z{\left( {\sqrt x + \sqrt y } \right)^2}\).
Khi đó ta có:
\(P \le \frac{x}{{x + \sqrt {x{{\left( {\sqrt y + \sqrt z } \right)}^2}} }} + \frac{y}{{y + \sqrt {y{{\left( {\sqrt z + \sqrt x } \right)}^2}} }} + \frac{z}{{z + \sqrt {z{{\left( {\sqrt x + \sqrt y } \right)}^2}} }}\)
\( = \frac{{\sqrt x }}{{\sqrt x + \sqrt y + \sqrt z }} + \frac{{\sqrt y }}{{\sqrt y + \sqrt z + \sqrt x }} + \frac{{\sqrt z }}{{\sqrt z + \sqrt x + \sqrt y }}\)
\( = \frac{{\sqrt x + \sqrt y + \sqrt z }}{{\sqrt x + \sqrt y + \sqrt z }} = 1\).
Vậy Pmax = 1 khi \(x = y = z = \frac{1}{3}\).