Cho x/a + y/b + z/c = 1 và a/x + b/y + c/z = 0. Chứng minh rằng: x^2/a^2 + y^2/b^2

Cho \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\)\(\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0\). Chứng minh rằng: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\).

Trả lời

Ta có:

+) \(\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 0 \Leftrightarrow \frac{{ayz + bxz + cxy}}{{xyz}} = 0 \Leftrightarrow ayz + bxz + cxy = 0\)

+) \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \Leftrightarrow {\left( {\frac{x}{a} + \frac{y}{b} + \frac{z}{c}} \right)^2} = 1\)

\( \Leftrightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} + 2\left( {\frac{{xy}}{{ab}} + \frac{{yz}}{{bc}} + \frac{{xz}}{{zc}}} \right) = 1\)

\( \Leftrightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} + 2\left( {\frac{{ayz + bxz + cxy}}{{abc}}} \right) = 1\)

\( \Leftrightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1\) (đpcm).

Câu hỏi cùng chủ đề

Xem tất cả