Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB

Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H, K. Chứng minh rằng \(\widehat {KHB} = \widehat {HKC}\)

Trả lời
Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB (ảnh 1)

Gọi M là trung điểm của AD, N là trung điểm của BC

Xét tam giác ACD có M, E lần lượt là trung điểm của AD, AC

Suy ra ME là đường trung bình

Do đó ME // CD, \(ME = \frac{1}{2}C{\rm{D}}\) (1)

Xét tam giác BCD có N, F lần lượt là trung điểm của BC, BD

Suy ra NF là đường trung bình

Do đó NF // CD, \(NF = \frac{1}{2}C{\rm{D}}\)  (2)

Xét tam giác ACB có N, E lần lượt là trung điểm của BC, AC

Suy ra NE là đường trung bình

Do đó NE // AB, \(NE = \frac{1}{2}AB\)    (3)

Xét tam giác ABD có M, F lần lượt là trung điểm của AD, BD

Suy ra MF là đường trung bình

Do đó MF // AB, \(MF = \frac{1}{2}AB\)   (4)

Từ (1), (2), (3) và (4) suy ra \(\left\{ \begin{array}{l}ME//NF//C{\rm{D}}\\MF//NE//AB\\ME = NF = \frac{1}{2}C{\rm{D}}\\MF = NE = \frac{1}{2}AB\end{array} \right.\)

Mà AB = CD nên NF = NE

Suy ra tam giác NFE cân tại N

Do đó \(\widehat {NF{\rm{E}}} = \widehat {{\rm{NEF}}}\)

Vì NE // AB nên \(\widehat {KHB} = \widehat {NEK}\) (hai góc đồng vị)

Vì NF // CD nên \(\widehat {HKC} = \widehat {NFH}\) (hai góc đồng vị)

Suy ra \(\widehat {KHB} = \widehat {HKC}\)

Vậy \(\widehat {KHB} = \widehat {HKC}\).

Câu hỏi cùng chủ đề

Xem tất cả