Cho tứ diện ABCD có ABC là tam giác đều, BCD là tam giác vuông cân tại D, và AD hợp với (BCD) một góc 60°. Tính thể tích tứ diện ABCD.

Cho tứ diện ABCD có ABC là tam giác đều, BCD là tam giác vuông cân tại D, và AD hợp với (BCD) một góc 60°. Tính thể tích tứ diện ABCD.

Trả lời
Cho tứ diện ABCD có ABC là tam giác đều, BCD là tam giác vuông cân tại D, và AD hợp với (BCD) một góc 60°. Tính thể tích tứ diện ABCD. (ảnh 1)

Gọi H là trung điểm của BC

Vì tam giác BCD cân tại D nên DH vừa là trung tuyến vừa là đường cao.

Suy ra: DH vuông góc BC.

Ta có tam giác ABC đều nên AH (BCD)

Mà (ABC) (BCD) nên AH (BCD)

Ta có: AH HD

Suy ra: AH = AD.tan60° = a3

HD = AD.cot60° = a33

Ta lại có tam giác BCD vuông cân tại D nên BC = 2HD = 2a33

Khi đó thể tích VABCD = 13.AH.SBCD=13.a3.12.a33.2a33=a339.

Câu hỏi cùng chủ đề

Xem tất cả