Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // OQ (M thuộc

Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // OQ (M thuộc OP), IN // OP (N thuộc OQ). Chứng minh rằng: Tam giác IMN cân tại I.

Trả lời
Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // OQ (M thuộc  (ảnh 1)

a) Xét ΔOPQ có: I là trung điểm của PQ và IN // OP

Do đó N là trung điểm của OQ

Xét ΔOPQ có: I là trung điểm của PQ và IM // OQ

Do đó M là trung điểm của OP

Vì tam giác OPQ cân tại O  nên \(\widehat P = \widehat Q\) và OP = OQ

Suy ra MP = NQ = OM = ON

Xét ΔMPI và ΔNQI có 

MP = NQ (chứng minh trên);

\(\widehat P = \widehat Q\) (chứng minh trên);

PI = QI (giả thiết)

Do đó: ΔMPI = ΔNQI (c.g.c)

Suy ra: IM = IN (hai cạnh tương ứng)

Hay ΔIMN cân tại I.

Câu hỏi cùng chủ đề

Xem tất cả