Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Từ M hạ MP vuông góc với AB

Cho \[\Delta ABC\]vuông tại A. Gọi M là trung điểm của BC. Từ M hạ MP vuông góc với AB, \[{\rm{P }} \in {\rm{ AB}}\], \(MQ \bot AC\left( {Q \in AC} \right)\) R đối xứng M qua P

a, AQMP là hình gì ? Vì sao?

b, AMBR là hình gì ? Vì sao?

c, Điều kiện để tâm giác ANG để AQM P là hình vuông

Trả lời
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Từ M hạ MP vuông góc với AB (ảnh 1)

a) Ta có: \(\Delta ABC\)vuông tại A

\( \Rightarrow \widehat {\rm{A}}{\rm{ = 9}}{{\rm{0}}^{\rm{o}}}\)

MP vuông góc AB \( \Rightarrow \widehat {\rm{P}}{\rm{ = 9}}{{\rm{0}}^{\rm{o}}}\)

MQ vuông góc AC \[ \Rightarrow \widehat {\rm{Q}}{\rm{ = 9}}{{\rm{0}}^{\rm{o}}}\]

Ta có: \[\widehat {\rm{A}}{\rm{ = }}\widehat {\rm{P}}{\rm{ = }}\widehat {\rm{Q}}{\rm{ = 9}}{{\rm{0}}^{\rm{o}}}\]

Vậy AQMP là hình chữ nhật

b) Ta có: \(\Delta ABC\)vuông; AM là trung tuyến \[ \Rightarrow {\rm{AM = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{BC = MB}}\]

Vậy \(\Delta AMB\)cân mà MP là đường cao

→ MP cũng là trung tuyến

→ AP = BP.

Ta có: AP = BP; MP = PR (R đối xứng với M qua P); \[MP \bot AB\](hay\[MR \bot AB\])

→ AMBR là hình thoi

c) Để AQMP là hình vuông thì:

\[\widehat {{\rm{BAM}}}{\rm{ = }}\widehat {{\rm{ MAC}}}\]

hay AM là phân giác mà AM là trung tuyến

\( \Rightarrow \Delta ABC\)vuông cân tại A.

Câu hỏi cùng chủ đề

Xem tất cả