Cho tam giác ABC vuông tại A, đường cao AH (h.5). Giải bài toán trong mỗi trường hợp sau: a) Cho AH = 16, BH = 25. Tính AB, AC, BC, CH.  b) Cho AB = 12, BH = 6. Tính AH, AC, BC, CH.

Cho tam giác ABC vuông tại A, đường cao AH (h.5). Giải bài toán trong mỗi trường hợp sau:

a) Cho AH = 16, BH = 25. Tính AB, AC, BC, CH. 

b) Cho AB = 12, BH = 6. Tính AH, AC, BC, CH.

Trả lời

Lời giải

Media VietJack

a) – Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có: AH2 = BH.CH

\( \Rightarrow CH = \frac{{A{H^2}}}{{BH}} = \frac{{{{16}^2}}}{{25}} = 10,24\)

BC = BH + CH = 25 + 10,24 = 35,24.

– Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

AB2 = BH.BC

\( \Rightarrow AB = \sqrt {BH\,.\,BC} = \sqrt {25\,.\,35,24} = 29,68\)

AC2 = HC.BC

\( \Rightarrow AC = \sqrt {CH\,.\,BC} = \sqrt {10,24\,.\,35,24} = 18,99\)

b) – Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:   

AB2 = BH.BC

\( \Rightarrow BC = \frac{{A{B^2}}}{{BH}} = \frac{{{{12}^2}}}{6} = 24\)

CH = BC − BH = 24 − 6 = 18

– Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

AC2 = HC.BC

\( \Rightarrow AC = \sqrt {CH\,.\,BC} = \sqrt {18\,.\,24} = 20,78\)

– Theo hệ thức liên hệ giữa đường cao và hình chiếu cạnh góc vuông, ta có:

AH2 = BH.CH

\( \Rightarrow AH = \sqrt {HB\,.\,HC} = \sqrt {6\,.\,18} = 6\sqrt 3 \)

Câu hỏi cùng chủ đề

Xem tất cả