Lời giải
a) Xét ∆ABH và ∆CBA có:
\(\widehat {BHA} = \widehat {BAC} = 90^\circ \)
\(\widehat {ABC}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AB}}{{CB}} = \frac{{BH}}{{BA}}\) (tỉ số đồng dạng)
Do đó AB2 = BH . BC.
d) Xét ∆CAH và ∆CBA có:
\(\widehat {CHA} = \widehat {BAC} = 90^\circ \).
\(\widehat {ACB}\) chung.
Do đó (g.g)
Suy ra \(\frac{{AC}}{{BC}} = \frac{{HC}}{{AC}}\) (tỉ số đồng dạng)
Do đó AC2 = CH . BC.
c) Ta có \(\frac{1}{{{\rm{A}}{{\rm{B}}^2}}} + \frac{1}{{{\rm{A}}{{\rm{C}}^2}}} = \frac{1}{{{\rm{BH}}{\rm{.BC}}}} + \frac{1}{{{\rm{CH}}{\rm{.BC}}}}\)
\( = \frac{{{\rm{CH}}{\rm{.BC}}}}{{{\rm{CH}}{\rm{.BH}}{\rm{.B}}{{\rm{C}}^2}}} + \frac{{{\rm{BH}}{\rm{.BC}}}}{{{\rm{CH}}{\rm{.BH}}{\rm{.B}}{{\rm{C}}^2}}}\)
\( = \frac{{{\rm{CH}}{\rm{.BC + BH}}{\rm{.BC}}}}{{{\rm{CH}}{\rm{.BH}}{\rm{.B}}{{\rm{C}}^2}}}\)
\( = \frac{{{\rm{BC(CH + BH)}}}}{{{\rm{CH}}{\rm{.BH}}{\rm{.B}}{{\rm{C}}^2}}} = \frac{{{\rm{BC}}{\rm{. BC}}}}{{{\rm{CH}}{\rm{.BH}}{\rm{.B}}{{\rm{C}}^2}}}\)
\( = \frac{{{\rm{B}}{{\rm{C}}^2}}}{{{\rm{CH}}{\rm{.BH}}{\rm{.B}}{{\rm{C}}^2}}} = \frac{1}{{{\rm{CH}}{\rm{.BH}}}}\).
Vì tam giác AHC vuông tại H nên \(\widehat {HCA} + \widehat {HAC} = 90^\circ \)(trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {BAH} + \widehat {HAC} = \widehat {BAC} = 90^\circ \)
Suy ra \(\widehat {BAH} = \widehat {HCA}\)
Xét ∆AHB và ∆CHA có:
\(\widehat {BHA} = \widehat {AHC} = 90^\circ \)
\(\widehat {BAH} = \widehat {HCA}\)(chứng minh trên)
Do đó (g.g)
Suy ra \(\frac{{AH}}{{CH}} = \frac{{BH}}{{AH}}\) (tỉ số đồng dạng)
Do đó AH2 = BH . CH.
Vậy \(\frac{1}{{{\rm{A}}{{\rm{B}}^2}}} + \frac{1}{{{\rm{A}}{{\rm{C}}^2}}}\)= \(\frac{1}{{{\rm{CH}}{\rm{.BH}}}}\)= \(\frac{1}{{{\rm{A}}{{\rm{H}}^2}}}\).