Cho tam giác ABC vuông tại A có AB = AC. Qua A vẽ đường thẳng d (B, C nằm cùng phía đối với d). Kẻ BM và CN vuông góc với d. Chứng minh rằng: a) ∆BAM = ∆ACN; b) MN = BM + CN.

Cho tam giác ABC vuông tại A có AB = AC. Qua A vẽ đường thẳng d (B, C nằm cùng phía đối với d). Kẻ BM và CN vuông góc với d. Chứng minh rằng:

a) ∆BAM = ∆ACN;

b) MN = BM + CN.

Trả lời

Lời giải

Media VietJack

Ta có \(\widehat {MAB} + \widehat {BAC} + \widehat {CAN} = 180^\circ \) (kề bù)

\( \Leftrightarrow \widehat {MAB} + \widehat {CAN} = 180^\circ - \widehat {BAC} = 180^\circ - 90^\circ = 90^\circ \).

\(\widehat {MAB} + \widehat {ABM} = 90^\circ \) (do tam giác ABM vuông tại M).

Do đó \(\widehat {ABM} = \widehat {CAN}\).

Xét ∆BAM và ∆ACN, có:

\[\widehat {BMA} = \widehat {ANC} = 90^\circ \];

AB = AC (do tam giác ABC vuông cân đỉnh A);

\(\widehat {ABM} = \widehat {CAN}\) (chứng minh trên).

Do đó ∆BAM = ∆ACN (cạnh huyền – góc nhọn).

b) Ta có ∆BAM = ∆ACN (chứng minh trên).

Suy ra BM = AN và AM = CN (các cặp cạnh tương ứng).

Ta có MN = AM + AN = CN + BM.

Vậy ta có điều phải chứng minh.

Câu hỏi cùng chủ đề

Xem tất cả